Answer:
a) [tex]P(Adult)=\frac{73}{249}=0.2932=29.32%[/tex]
b) [tex]P(Chocolate)=\frac{91}{249}=0.3655=36.55%[/tex]
c) [tex]P(AdultorVanilla)=\frac{31}{83}=0.3734=37.34%[/tex]
d) [tex]P(ChildandVanilla)=\frac{10}{249}=0.0402=4.02%[/tex]
e) [tex]P(Strawberry/Child)=\frac{22}{47}=0.4681=46.81%[/tex]
f) [tex]P(Child/strawberry)=\frac{44}{95}=0.4632=46.32%[/tex]
Step-by-step explanation:
a)
In order to solve part a of the problem, we need to find the number of adults in the survey and divide them into the number of people in the survey by using the following formula>
[tex]P=\frac{desired}{possible}[/tex]
In this case we have a total of 17+43+13 adults which gives us 73 adults and a total of 249 people surveyed so we get:
[tex]P(Adults)=\frac{73}{249}=0.2932=29.32%[/tex]
b)
The same principle works for part b
there are: 40+34+17=91 people who likes chocolate ice cream the best so the probability is:
[tex]P(Chocolate)=\frac{91}{249}=0.3655=36.55%[/tex]
c)
when it comes to the or statement, we can use the following formula:
P(A or B) = P(A) + P(B) - P( A and B)
In this case:
[tex]P(Adult)=\frac{73}{249}[/tex]
[tex]P(Vanilla)=\frac{10+10+43}{249}=\frac{63}{249}[/tex]
[tex]P(AdultandVanilla)=\frac{43}{249}[/tex]
so:
[tex]P(AdultorVanilla)=\frac{73}{249}+\frac{63}{249}-\frac{43}{249}[/tex]
[tex]P(AdultorVanilla)=\frac{31}{83}=0.3734=37.34%[/tex]
d)
Is a child and likes vanilla the best.
In the table we can see that 10 children like vanilla so the probability is:
[tex]P(ChildandVanilla)=\frac{10}{249}=0.0402=4.02%[/tex]
e)
Likes strawberry the best, GIVEN that the person is a child.
In this case we can make use of the following formula:
[tex]P(B/A)=\frac{P(AandB)}{P(A)}[/tex]
so we can get the desired probabilities. First, for the probability of the person liking strawberry the best and the person being a child, we know that 44 children like strawberry the best, so the probability is:
[tex]P(childrenandstrawberry)=\frac{44}{249}[/tex]
Then, we know there are 40+10+44=94 children, so the probability for the person being a child is:
[tex]P(Child)=\frac{94}{249}[/tex]
Therefore:
[tex]P(Strawberry/Child)=\frac{\frac{44}{249}}{\frac{94}{249}}[/tex]
[tex]P(Strawberry/Child)=\frac{22}{47}=0.4681=46.81%[/tex]
f)
The same works for the probability of the person being a child given that the person likes strawberry the best.
First, for the probability of the person liking strawberry the best and the person being a child, we know that 44 children like strawberry the best, so the probability is:
[tex]P(childrenandstrawberry)=\frac{44}{249}[/tex]
Then, we know there are 44+38+13 persons like strawberry, so the probability for the person liking strawberry is:
[tex]P(Child)=\frac{95}{249}[/tex]
Therefore:
[tex]P(Child/Strawberry)=\frac{\frac{44}{249}}{\frac{95}{249}}[/tex]
[tex]P(Child/strawberry)=\frac{44}{95}=0.4632=46.32%[/tex]
Suppose that the walking step lengths of adult males are normally distributed with a mean of 2.5 feet and a standard deviation of 0.4 feet. A sample of 45 men’s step lengths is taken. Step 1 of 2 : Find the probability that an individual man’s step length is less than 1.9 feet. Round your answer to 4 decimal places, if necessary.
Answer:
0.0668 = 6.68% probability that an individual man’s step length is less than 1.9 feet.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Normally distributed with a mean of 2.5 feet and a standard deviation of 0.4 feet.
This means that [tex]\mu = 2.5, \sigma = 0.4[/tex]
Find the probability that an individual man’s step length is less than 1.9 feet.
This is the p-value of Z when X = 1.9. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{1.9 - 2.5}{0.4}[/tex]
[tex]Z = -1.5[/tex]
[tex]Z = -1.5[/tex] has a p-value of 0.0668
0.0668 = 6.68% probability that an individual man’s step length is less than 1.9 feet.
Laura lives 15 miles east of Kevin’s place. Kevin lives 8 miles south of Michelle’s place. How far does Michelle live from Laura’s place?
17 miles
24 miles
32 miles
36 miles
Answer:
17 miles.
Step-by-step explanation:
Let's define:
North as the positive y-axis
East as the positive x-axis.
We know that Laura lives 15 miles east of Kevin's place.
Kevin lives 8 miles south of Michelle's place.
So, if we define the origin, (0, 0) as Laura's place.
From:
"that Laura lives 15 miles east of Kevin's place."
We have that the location of Kevin's house is 15 miles west from Laura's place, then Kevin's house is at:
(0, 0) + (-15mi, 0) = (-15mi, 0)
From Kevin lives 8 miles south of Michelle's place, we know that Michelle's live 8 miles north of Kevin's place.
Then the location of Michele's house is the location of Kevin's plus (0, 8mi).
Michelle's house is located at:
(-15mi, 0) + (0, 8mi) =(-15mi, 8mi)
Now we want to find the distance between Michelle's house and Laura's house.
Michelle's house is at (-15mi, 8mi)
Laura's house is at (0mi, 0mi)
Remember that the distance between two points (a, b) and (c, d) is given by:
[tex]D = \sqrt{(a - c)^2 + (b - d)^2}[/tex]
Then the distance between (-15mi, 8mi) and (0mi, 0mi) is:
[tex]D = \sqrt{(-15mi - 0mi)^2 + (8mi - 0mi)^2} = 17mi[/tex]
The correct option is the first one, 17 miles.
why mathematics is the very important in a small business? is mathematics is helpful to you? explain
Answer:
Mathematics is very important in a small business is because when you make money transactions with other people you need to know how to count money correctly and your calculations can’t be wrong. When we sign up for jobs like police, or firefighter, we need to use math. Math helps us solve real-world problems.
Step-by-step explanation:
What is the average rate of change for this quadratic function for the interval from x = 0 to x = 3 ?
Answer:
-1/2
Step-by-step explanation:
Please help asap i will give brainliest. Find the exact perimeter and area of the triangle.
Answer:
perimeter=9cm
Area=2cm^2
step by step explanation:
Firstly solve the sides that don't have figures using trigonometry
#1..sin15°=opposite/hypotenuse
sin15=opposite/4
opposite=sin15×4
=1.035, round off to 1cm
Then find the value of the base
tan15=opposite/adjacent
tan15=1/adjacent
1=tan15adjascent
1/tan15=adjacent
adjacent or base=3.7 round off to 4cm
After finding these values find the perimeter
p=side+side+side
p=4cm+4cm+1cm
p=9cm
Find the area
1/2bh
1/2×4×1
A=2cm2
Today Katherine woke up late. Since her
alarm did not go off, she only had 37
minutes to get ready for work. She knows
it takes 12 minutes to shower and some
amount of minutes, m, to do her
makeup, but it takes a different amount
of time each day. Represent this situation
using an expression.
Answer:
49+m
Step-by-step explanation:
37+12 = 49
49 + m is the total time Katherine takes.
Michael was 1.0 metres tall, and could
only reach up to the 1st floor lift button. .
From the 1st floor, he had to walk up 100
steps to reach the 6th floor.
Vinh was 1.4 metres tall, and could reach
the 5th floor button. He had to walk up
20 steps to reach the 6th floor.
Lucy was 1.1 metres tall. To reach the
6th floor, how many steps did she have to
walk up?
Answer:
Lucy must walk up 80 steps to reach the 6th floor.
Step-by-step explanation:
Since Michael was 1.0 meters tall, and could only reach up to the 1st floor lift button, and from the 1st floor, he had to walk up 100 steps to reach the 6th floor; while Vinh was 1.4 meters tall, and could reach the 5th floor button, and he had to walk up 20 steps to reach the 6th floor; If Lucy was 1.1 meters tall, to determine how many steps did she have to walk up to reach the 6th floor, the following calculation must be performed:
1 = 100
1.4 = 20
1.4 - 1 = 100 - 20
0.4 = 80
0.1 = X
0.1 x 80 / 0.4 = X
20 = X
100 - 20 = 80
Therefore, Lucy must walk up 80 steps to reach the 6th floor.
Caffeine: Following are the number of grams of carbohydrates in 12-ounce espresso beverages offered at a coffee shop. 44 29 11 61 15 38 20 41 42 25 26 10 30 12 18 40 21 24 43 6 46 55 34 35 Send data to Excel Part: 0 / 40 of 4 Parts Complete Part 1 of 4 Your Answer is incorrect (a) Find the first and third quartiles of these data. The first quartile of these data is . The third quartile of these data is
Answer:
[tex]Q_1 = 19[/tex] --- first quartile
[tex]Q_3 = 41.5[/tex] --- third quartile
Step-by-step explanation:
Required:
The first and the third quartile
First, we order the dataset in ascending order[tex]Sorted: 6, 10, 11, 12, 15, 18, 20, 21, 24, 25, 26, 29, 30, 34, 35, 38, 40, 41, 42, 43, 44, 46, 55, 61[/tex]
The count of the dataset is:
[tex]n = 24[/tex]
Calculate the median position
[tex]Median=\frac{n+1}{2}[/tex]
[tex]Median=\frac{24+1}{2}[/tex]
[tex]Median=\frac{25}{2}[/tex]
[tex]Median=12.5th[/tex]
This means that the median is between the 12th and the 13th item
Next;
Split the dataset to two parts: 1 to 12 and 13 to 24
[tex]First: 6, 10, 11, 12, 15, 18, 20, 21, 24, 25, 26, 29[/tex]
[tex]Second: 30, 34, 35, 38, 40, 41, 42, 43, 44, 46, 55, 61[/tex]
The median position is:
[tex]Median = \frac{n + 1}{2}[/tex]
In this case; n = 12
So:
[tex]Median = \frac{12 + 1}{2}[/tex]
[tex]Median = \frac{13}{2}[/tex]
[tex]Median = 6.5th[/tex]
This means that the median is the average of the 6th and 7th item of the sorted dataset
So, we have:
[tex]Q_1 = \frac{18 + 20}{2}[/tex]
[tex]Q_1 = \frac{38}{2}[/tex]
[tex]Q_1 = 19[/tex] --- first quartile
[tex]Q_3 = \frac{41+42}{2}[/tex]
[tex]Q_3 = \frac{83}{2}[/tex]
[tex]Q_3 = 41.5[/tex] --- third quartile
Which one of the following is a better buy: a large pizza with a 14-inch diameter for $13.00 or a medium pizza with a 7-inch diameter for $4.00?
O Large Pizza
Medium Dizz
Please help :)
Answer:
Large pizza is the answer
log4(x^2+1)=log4(-2x)
Answer:
x = − 1
Step-by-step explanation:
A square coffee shop has sides that are 10 meters long. What is the coffee shop's area?
square meters
100
SOLUTION:
10•10= 100
Which of the following is equivalent to
5v13^3
Answer:
13⅗ is the answer of your quest
Can someone help me with this question an also the rest of my school work?
Answer:
I think this one is B
Step-by-step explanation:
William has been contracted to paint a school classroom. The classroom is 20 m long, 15 m wide and 5 m high. There are four windows (2m by 3m) and a door (2m by 1m). Determine the cost of painting the ceiling at N$ 6.50/m²
Answer:
Step-by-step explanation:
l -> length
b -> width
h -> height
Find the area of four walls and ceiling. then subtract the area of four windows and a door form that area.
Area of four walls + ceiling = 2( lh + bh) +lb
= 2*(20*5 + 15*5) + 20*15
= 2( 100 + 75) + 300
= 2* 175 + 300
= 350 +300
= 650 sq m
Area of window = 2 *3 = 6 sq.m
Area of four windows = 4*6 = 24 sq.m
Area of door = 2 * 1 = 2 sq.m
Area of four walls excluding 4 windows and door = 650 - 24 - 2 = 624 sq.m
Cost of painting = 624 * 6.50
= $ 4056
Answer: 1950 dollars to paint the ceiling only (ignoring the walls)
The cost to paint the walls only is 2106 dollars.
The cost to paint the walls and ceiling is 4056 dollars.
==================================================
Explanation:
It seems a bit strange how your teacher mentions the windows and doors, but then asks about the ceiling only. Perhaps this is a red herring, but I'm not sure.
Anyway, to directly answer the question, we'll need to find the area of the ceiling first. The ceiling is a rectangle of dimensions 20 m by 15 m, so its area is 20*15 = 300 square meters.
Since paint costs 6.50 dollars per square meter, the total cost for the ceiling alone is 6.50*300 = 1950 dollars
If your teacher only cares about the ceiling, then you can stop here (and ignore the next section below).
---------------------------
If you wanted to find the cost to paint the walls, then we need to find the area of the walls.
For now, ignore the windows and door. Two opposite walls have area of 20*5 = 100 m^2 each. That accounts for 2*100 = 200 m^2 of wall area so far.
The other pair of opposite walls have area 15*5 = 75 m^2 each. That's another 2*75 = 150 m^2 of wall area.
In all, the total wall area without considering the windows or door is 200+150 = 350 m^2.
Now we consider the windows. Each window is 2 m by 3 m, yielding an area of 2*3 = 6 m^2. Four such windows have a total area of 4*6 = 24 m^2.
The door is 2 m by 1 m, so its area is 2*1 = 2 m^2
We'll subtract the wall area and the combined window+door areas to get
wallArea - windowArea - doorArea = 350-24-2 = 324
So after accounting for the windows and door, the amount of wall to paint is 324 m^2, which leads to a cost of 6.50*324 = 2106 dollars.
Therefore, painting the walls and ceiling gets us a total cost of 1950+2106 = 4056 dollars
This section is entirely optional if your teacher only cares about the ceiling.
Sumas y restas
W+y=9
3W-y=11
Answer:
w = 5
y = 4
Step-by-step explanation:
w + y = 9
3w - y = 11 ( + )
________
4w + 0 = 20
4w = 20
w = 20 / 4
w = 5
Substitute w = 5 in eq. w + y = 9,
w + y = 9
5 + y = 9
y = 9 - 5
y = 4
A man had 35 goats.he sold 10 of
them.how many did he remains with.
Answer:
He remained with 25 goats.
Step-by-step explanation:
35 - 10 = 25
Hope this helps.
Answer:
He remained with 25 goats
Step-by-step explanation:
35 - 10 = 25
Help. Does anyone know the answer. Pls help!
Answer:
Step-by-step explanation:
the first and last choices look good
What is the volume of a cube that has a side length of 5 centimeters?
A cube with side lengths of 5 centimeters.
Recall the formula Cube volume = s cubed.
Answer:
125
Step-by-step explanation:
We know that the side length is 5, and the formula for the volume of a cube is the side length cubed. Therefore, 5 cubed is equal to the volume.
A value cubed is equal to a value multiplied by itself twice. Therefore, 5 cubed is equal to 5 * 5 * 5. This is equal to 125
Answer:
125
Step-by-step explanation:
Which statement about y=x^2-12x+35 is true?
A. The zeros are 7 and 5, because y=(x-7)(x-5)
B. The zeros are 7 and -5, because y=(x+7)(x-5)
c. The zeros are -7 and -5, because y=(x+7)(x+5)
D. The zeros are -7 and -5, because y=(x-7)(x-5)
Answer:The zeros are 7 and 5, because y=(x-7)(x-5)
Step-by-step explanation:
9.
Find the area of the shaded region.
6
6
The exact area is A =
square units.
Answer:
8. 36
Step-by-step explanation:
8.
The diameter of the square is x=[tex]\sqrt{6^{2} +6^{2} }\\[/tex] = [tex]\sqrt{72}[/tex] = 6 [tex]\sqrt{2}[/tex]
The diameter of the square is the diameter of the circle, therefore the radius of the circle is r = 6 [tex]\sqrt{2}[/tex]/2 = 3[tex]\sqrt{2}[/tex]
The area of the shaded region, which is a circle is A= π[tex]r^{2}[/tex] = π[tex](3\sqrt{2} )^{2}[/tex] = 36π
Round off to the underlined place values. 1 0.5242 2. 2.1616 3. 5.4852 4. 0.5862 5. 5.9658 6. 2.8959 7. 8.2584 8. 8.8956 9. 4.1492 1 5481
Answer:
wheres the underline pls let me know what is underlined ill answer it on comment
If a/b=7/2, then 2a= ______
A) 7b
B) 4b
C) 2b
D) 14b
Answer:
Option A, 7b
Step-by-step explanation:
a/b=7/2
or, 2a=7b
Answered by GAUTHMATH
Answer:
A)7b
its yr ans.
hope it helps.
stay safe healthy and happy. ..A field book is a private notepad used by a surveyor to transcribe notes and is not considered a legal document True False
Answer:
False
Step-by-step explanation:
A field book is a private notepad used by a surveyor to record measurements and notes.
Basically, the size of a field book is 200 millimeters × 120 millimeters (20 centimeters × 12 centimeters) and it's typically opened lengthwise. There are two (2) main types of field book and these includes;
I. Double-line field book.
II. Single-line field book.
As a general rule, it's best that all findings, entries (notes) and observations are recorded or made into a field book after each and every measurement have been taken by a surveyor.
In conclusion, a field book is considered to be a legal document used by surveyors to keep records of accomplished field work or work done in the field. Thus, it's not a private notepad used by a surveyor to transcribe notes.
Answer:
False
Step-by-step explanation:
A field book is a private notepad used by a surveyor to transcribe notes and is not considered a legal document is False.
Round 0.485 to the nearest hundredth
Decimals start at tenths, then hundredths, then thousandths, and so on. When we round, we look at the place value that is one smaller than the one we want to round to.
So, let's take a look at the thousandths place in 0.485. The value in the thousandths place is 5. When rounding, if the value is 5 or over we round up and if the value is 4 or lower we round down. Since the value in the thousandths place is 5, we will round the hundredths place up one.
0.485 rounded to the nearest hundredth is 0.49
Hope this helps!
Answer:
0.49
Step-by-step explanation:
[tex]0<x<5=[/tex] Round down
[tex]x\geq5=[/tex] Round up
In this case, it's a round up, so the answer would be...
0.49
Hope this helped! Please mark brainliest!
if sinA=√3-1/2√2,then prove that cos2A=√3/2 prove that
Answer:
[tex]\boxed{\sf cos2A =\dfrac{\sqrt3}{2}}[/tex]
Step-by-step explanation:
Here we are given that the value of sinA is √3-1/2√2 , and we need to prove that the value of cos2A is √3/2 .
Given :-
• [tex]\sf\implies sinA =\dfrac{\sqrt3-1}{2\sqrt2}[/tex]
To Prove :-
•[tex]\sf\implies cos2A =\dfrac{\sqrt3}{2} [/tex]
Proof :-
We know that ,
[tex]\sf\implies cos2A = 1 - 2sin^2A [/tex]
Therefore , here substituting the value of sinA , we have ,
[tex]\sf\implies cos2A = 1 - 2\bigg( \dfrac{\sqrt3-1}{2\sqrt2}\bigg)^2 [/tex]
Simplify the whole square ,
[tex]\sf\implies cos2A = 1 -2\times \dfrac{ 3 +1-2\sqrt3}{8} [/tex]
Add the numbers in numerator ,
[tex]\sf\implies cos2A = 1-2\times \dfrac{4-2\sqrt3}{8} [/tex]
Multiply it by 2 ,
[tex]\sf\implies cos2A = 1 - \dfrac{ 4-2\sqrt3}{4} [/tex]
Take out 2 common from the numerator ,
[tex]\sf\implies cos2A = 1-\dfrac{2(2-\sqrt3)}{4} [/tex]
Simplify ,
[tex]\sf\implies cos2A = 1 -\dfrac{ 2-\sqrt3}{2}[/tex]
Subtract the numbers ,
[tex]\sf\implies cos2A = \dfrac{ 2-2+\sqrt3}{2} [/tex]
Simplify,
[tex]\sf\implies \boxed{\pink{\sf cos2A =\dfrac{\sqrt3}{2}} } [/tex]
Hence Proved !
answer???????? with explanations, para lam ko di mga hula
Answer:
144
Step-by-step explanation:
To Find :-
Least Common denominator .Solution :-
We have ,
> 1/8 , 2/9 , 3/12 .
The denominator of the fractions are ,
> 8 , 9 , 12
The LCM of 8,9,12 will be ,
2 | 8 , 9 , 12
2 | 4 , 9 , 6
2 | 2 , 9 , 3
3 | 2 , 3 , 1
Therefore , LCM will be ,
> 2⁴ × 3² = 16 × 9 = 144
A car took 6 minutes to travel between two stations that are 3 miles apart find the average speed of the car in mph
Answer: 30 mph is the answer.
Step-by-step explanation:
s = 3 miles
t = 6 minutes
so,
60 minute = 1 hour
1 minute = 1/60 hour
6 minutes = 1/60 * 6 = 0.1 hour
so
average speed = s/t
= 3/0.1 = 30 mph
Step by step solution help me pls
Step-by-step explanation:
Recall that
[tex]1 + \tan^2 x = \sec^2 x[/tex]
and
[tex]\dfrac{d}{dx}(\tan x) = \sec^2 x[/tex]
so that
[tex]\displaystyle \int \tan^2 x = \int (\sec^2 x - 1)dx[/tex]
[tex]\:\:\:\:\:\:\:\:\:=\int \sec^2 xdx - \int dx[/tex]
[tex]\:\:\:\:\:\:\:\:\:=\tan x - x + C[/tex]
where C is the constant of integration.
A driveway is in the shape of a rectangle 30 feet wide by 35 feet long. Find the perimeter in feet. & Find the area in square feet.
Find the perimeter of a rectangular tile with length 1/5ft and width 3/14ft
Answer:
[tex]\frac{29}{35}[/tex] ft (29/35 ft)
Step-by-step explanation:
1. LCDPerimeter: [tex]2w+2l[/tex]
[tex]2(\frac{1}{5})+2(\frac{3}{14})=\frac{2}{5} +\frac{6}{14}[/tex]
Since [tex]\frac{6}{14} = \frac{3}{7}[/tex], the LCD would be 35
2. SolvingNew equation: [tex]\frac{14}{35} +\frac{15}{35} =\frac{29}{35}[/tex]
[tex]\frac{29}{35}[/tex]
Hope this helped! Please mark brainliest :)