Answer:
The central angle measure of the sector in radians is [tex]\theta=\frac{13}{9}[/tex].
Step-by-step explanation:
A sector of a circle is the portion of a circle enclosed by two radii and an arc. It resembles a "pizza" slice.
The area of a sector when the central angle is in radians is given by
[tex]A=(\frac{\theta}{2})\cdot r^2[/tex]
where
r = radius
θ = central angle in radians
We know that the area of the sector is [tex]26 \:cm^2[/tex] and the radius is 6 cm. Applying the above formula and solving for the central angle ([tex]\theta[/tex]) we get that
[tex]26=(\frac{\theta}{2})\cdot (6)^2\\\\\left(\frac{\theta}{2}\right)\left(6\right)^2=26\\\\\frac{\frac{\theta}{2}\cdot \:6^2}{36}=\frac{26}{36}\\\\\frac{\theta}{2}=\frac{13}{18}\\\\\theta=\frac{13}{9}[/tex]
what is the diameter of this circle?
Answer: 7
Step-by-step explanation: whhhhyyyy
Answer:
the answer is attached to the picture
Find the surface area of the triangular prism shown below. 5x6x7
Answer:
5 times 6 is 30 and 30 times 7 is 210
so 210 is your anser hop that helps
Answer:
210
Step-by-step explanation: First way: 5x6=30x7=210
2nd way/distributive property: 5(6x7) 5(6=30x7=210.
ASAP! GIVING BRAINLIEST! Please read the question THEN answer correctly! No guessing. Show your work or give an explaination.
Answer:
B. [tex]f(x)=-(x-4)^{2} -3[/tex]
Step-by-step explanation:
[tex]f(x)=x^{2}[/tex]
The transformations are:
Reflected upon the x axis (x is now negative):
[tex]f(x)=-x^{2}[/tex]
Moved 4 units to the right (instead of just the variable x, you have (x-4)):
[tex]f(x)=-(x-4)^{2}[/tex]
And finally moved 3 units down (so now it's minus 3):
[tex]f(x)=-(x-4)^{2} -3[/tex]
Hope this helps! :]
t(x) = ax^5 + 2 where is a real number. If the points (-2, 66) and (2, -62) are on the graph of the function classify as one of the following.
0 < a < 1
a < -1
a > 1
0 > a > -1
Answer:
a < -1
Step-by-step explanation:
Okay, so we are given this equation:
t(x) = ax^5 + 2
Lets plug in -2 as x and see what happens.. t(x) can be 66..
[tex]a * (-2)^{5} + 2[/tex] = 66
-32a + 2 = 66
-32a = 64
a = -2
A is less than -1,
a < -1
write (2b^2)^3 without exponents.
Answer:
64 * b * b * b * b * b * b
Step-by-step explanation:
Apply exponent to number first, then expand the variable's exponent into repeated multiplication.
An exponent is a symbol that is written above and to the right of a mathematical expression to indicate the operation of raising a power.
The value of (2b²)³ without the exponents is 8 x b x b x b x b x b x b.
What is an exponent?A symbol that is written above and to the right of a mathematical expression to indicate the operation of raising to a power.
a², b³
a and b are base.
2 and 3 are exponents.
We have,
(2b²)³
This can be written as:
= 2³ x [tex]b^{2\times3}[/tex]
[ 2 x 2 x 2 = 2³ = 8 ], [ a². a³ = [tex]a^{2\times3}[/tex] ] and [ (a²)³ = [tex]a^{2\times3}[/tex] ]
= 8 x [tex]b^{6}[/tex]
Since we have to write without the exponents we have,
= 8 x b x b x b x b x b x b
Thus the value of (2b²)³ without the exponents is 8 x b x b x b x b x b x b.
Learn more about exponents here:
#SPJ2
How many pieces of tape 5mm long can be cut from a piece 15cm long ?
Answer:
A piece of tape: 15cm =150mm
=> The number of tape 5mm that could be cut: N = 150/5 = 30
Hope this helps!
:)
A square has an area of 16 square millimeters. What is the length of each side of the square?
2mm
8mm
12mm
4mm
NEED ASAP
Answer:
4mm.
Step-by-step explanation:
Area of a Square is: [tex]A=s^2[/tex]
's' -side length
We are given the area of 16 square mm.
[tex]16=s^2\\\sqrt{16} =\sqrt{s^2}\\\boxed {4=s}[/tex]
The length of each side of the square is 4mm.
Answer:
4 mm
Step-by-step explanation:
Hope this helps
The__ of a circle centered at the origin measures the distance from the origin to any point on the circle.
Answer:
the radius
Step-by-step explanation:
Answer:
radius
Step-by-step explanation:
Rewrite in logarithmic form 19^2 = 361
Answer:
[tex]\log_{19}{361}=2[/tex]
Step-by-step explanation:
We know that taking logarithms performs the transformation ...
[tex]b^e=x\\\\e\cdot\log{b}=\log{x}\quad\text{take logs}\\\\e=\dfrac{\log{x}}{\log{b}}\quad\text{divide by $\log{b}$}\\\\\log_b{x}=e\quad\text{use the change of base formula}[/tex]
Then for b=19, e=2, x=361, we have
[tex]\boxed{\log_{19}{361}=2}[/tex]
It is well documented that active maternal smoking during pregnancy is associated with​ lower-birth-weight babies. Researchers wanted to determine if there is a relationship between paternal smoking habits and birth weight. The researchers administered a questionnaire to each parent of newborn infants. One question asked whether the individual smoked regularly. Because the survey was administered within 15 days of​ birth, it was assumed that any regular smokers were also regular smokers during pregnancy. Birth weights for the babies​ (in grams) of nonsmoking mothers were obtained and divided into two​ groups, nonsmoking fathers and smoking fathers. The accompanying data are representative of the data collected by the researchers. The researchers concluded that the birth weight of babies whose father smoked was less than the birth weight of babies whose father did not smoke.
Nonsmokers Smokers
4194 3522 3454 3998 3455 3066
3062 3771 3783 3150 2986 2918
3544 3746 4019 4216 3502 3457
4054 3518 3884 3493 3255 3234
4248 3719 3668 2860 3282 2746
3128 3290 3423 3686 2851 3145
3471 4354 3544 3807 3548 4104
3994 2976 4067 3963 3892 2768
3732 3823 3302 3769 3509 3629
3436 3976 3263 4131 3129 4263
a. Is this an observational study or a designed experiment? Why?
b. What is the explanatory variable? What is the response variable?
c. Can you think of any lurking variables that may affect the results of the study?
d. In the article, the researchers stated that "birthweights were adjusted for possible confounders …." What does this mean?
e. Determine summary statistics (mean, median, standard deviation, quartiles) for each group.
f. Interpret the first quartile for both the nonsmoker and smoker group.
g. Draw a side-by-side boxplot of the data. Does the side-by-side boxplot confirm the conclusions of the study?
Answer:
b. Use an AD/AS diagram to show how a decrease in the inflation target can keep inflation and short-run output from starting to rise in 2021. Explain your diagram and what it reveals about monetary policy.
Answer:
938583
Step-by-step explanation:
Suppose an airline claims that its flights are consistently on time with an average delay of at most 15 minutes. It claims that the average delay is so consistent that the variance is no more than 150 minutes. Doubting the consistency part of the claim, a disgruntled traveler calculates the delays for his next 25 flights. The average delay for those 25 flights is 22 minutes with a standard deviation of 15 minutes. A chi-square test was performed. Graph the situation. Label and scale the horizontal axis. Mark the mean and test statistic. Shade the p-value.
Answer:
The p-value will be "0.0549".
Step-by-step explanation:
The given values are:
Time, t = 15 minutes
Df, σ = 25-1 = 24
Now,
⇒ [tex]H_{0}:\sigma^2\leq 150[/tex]
and,
⇒ [tex]H_{1}:\sigma^2>150[/tex]
As we know,
Chi square = [tex]\frac{(n-1)s^2}{(\sigma^2)}[/tex]
On putting the values in the above formula, we get
⇒ = [tex]\frac{24\times 15^2}{150}[/tex]
⇒ = [tex]\frac{24\times 225}{150}[/tex]
⇒ = [tex]36[/tex]
Therefore, p-value = 0.0549
The p-value determined > 0.05, the null hypothesis also isn't dismissed at point 0.05.
In ΔQRS, q = 1.3 inches, r = 1.6 inches and ∠S=157°. Find the length of s, to the nearest 10th of an inch.
Answer:
2.8
Step-by-step explanation:
using cosine rule
[tex]s^{2}[/tex] = [tex]1.3^{2} + 1.6^{2} - 2(1.3)(1.6)cos 157[/tex]
s = [tex]\sqrt{8.0793}[/tex] = 2.842 = 2.8
Select the correct answer.
Consider the given solids with the dimensions shown. Which solids are similar?
three triangular prisms. Figure 1 has a right triangle base that is 9 meters by 12 meters and a height of 16 meters, figure 2 has a right triangle base that is 12 meters by 16 meters and a height of 18 meters, and figure 3 has a right triangle base that is 36 meters by 48 meters and a height of 64 meters.
Figures not drawn to scale
A.
only figure 1 and figure 2
B.
only figure 2 and figure 3
C.
only figure 1 and figure 3
D.
all three figures
E.
none of the figures
Answer:
Only Figure 1 and Figure 3 Are Similar.
Step-by-step explanation:
Figure 1 and Figure 3 are proportional by 1:4 while the Figure 2 is not proportional to any of them.
Anyone plzzz this is due in an hour!!!! Will mark the brainliest
Answer:
C. Rectangle
Step-by-step explanation:
It will result in to a rectangle
If the ratio of boys to girls in a class is 2:3, when there are 10 boys how many girls are in the class?
Answer:
15 is your answer
Step-by-step explanation:
2 x 5 =10
3 x 5 =15
6th grade math :) ...
Answer:
Question 1) $0.08 per oz
Question 2) $0.09 per oz
Step-by-step explanation:
You have to divide the price by how many ounces there are.
$1.92 / 24 = $0.08
$1.35 / 15 = $0.09
Answer:
0.08.
0.09
Step-by-step explanation:
Which expression is equivalent to 3\dfrac78 - 6\dfrac143 8 7 −6 4 1 3, start fraction, 7, divided by, 8, end fraction, minus, 6, start fraction, 1, divided by, 4, end fraction?
Answer:
[tex]-2\dfrac{3}{8}[/tex]
Step-by-step explanation:
Given the expression:
[tex]3\dfrac78 - 6\dfrac14[/tex]
We are to simplify and obtain an equivalent expression.
Step 1: Change to Improper Fractions
[tex]3\dfrac78 - 6\dfrac14=\dfrac{31}{8}-\dfrac{25}{4}[/tex]
Step 2: Take the Lowest Common multiple of the denominators
LCM of 8 and 4 is 8.
Therefore:
[tex]\dfrac{31}{8}-\dfrac{25}{4}=\dfrac{31-2(25)}{8}\\\\\dfrac{31-50)}{8}\\\\=-\dfrac{19}{8}\\\\=-2\dfrac{3}{8}[/tex]
Therefore, an equivalent expression to [tex]3\dfrac78 - 6\dfrac14[/tex] is [tex]-2\dfrac{3}{8}[/tex].
Answer
3 7/8+ (-6 1/4)
Step-by-step explanation:
Solve the equation and express each solution in a + bi form.
x - 7² – 8=0
Answer:
x + 57i
Step-by-step explanation:
x - 7² – 8=0
x -49-8
x - 57 = x + 57(-1) ; i = -1( complex number notation)
x + 57i
A leak in a pool causes the height of the water to decrease by 0.25 foot over 2 hours. After the leak is fixed, the height of the water
is 4.75 feet. The equation 4.75 = x+(-0.25) can be used to find x, the original height of the water in a pool.
What was the original height of the water in the pool in feet?
4.5
Answer:
5 feet
Step-by-step explanation:
Add 0.25 to both sides of the equation:
4.75 +0.25 = x - 0.25 +0.25
5.00 = x
The original height of the water in the pool was 5.00 feet.
Answer:
5 feet
hope this helps
a.756
b.936
c.1,008
d.1,080
HELLLPPPPP
Answer:
936 is the correct option
Step-by-step explanation:
calm down !!!we know that the volume of cuboid is l×b×h=10×(10-2)×9=10×8×9=720now again the volume of cuboid (bottom) is l×b×h=12×9×2=216the total volume is cuboid(up) + cuboid (bottom)=720+216=936 which is bHans deposits $6000 into an account that pays simple interest at a rate of 5% per year. How much interest will he be paid in the first 4 years?
Answer:
Hans deposits $6000 into an account.
=> Principal P = 6000
Simple interest rate 5% per year.
=> Rate R = 5% = 5/100 = 0.05
The formula to calculate the amount of interest after 4 years:
A = P x R x years = 6000 x (5/100) x 4 = 1200$
Hope this helps!
:)
What the heck does this mean lol
Answer:
Step-by-step explanation:
The significant figures of a number that carry meaningful contribution to its measurement resolution
Ayuda porfa, es urgente
La siguiente tabla muestra la estatura de los estudiantes de noveno año de educación básica.
Con esos datos complete la tabla y determine los valores de las medidas de tendencia central.
160,160,160,161,162,163,164,165,165,165,165,166,167,167,167,167,168,168,168,169,170, 170, 170,171,173,173,173,175,175,176.
Answer:
Media: 167.88 cm
Mediana: 167.6 cm
Modo: 166.67 cm
Step-by-step explanation:
Hola!
La variable de interés es:
X: estatura de un alumno de noveno año de educación básica.
1)
Primero debes ordenar los datos de menor a mayor y contar cuantos de ellos corresponden dentro de cada intervalo determinado, por ejemplo, el primer intervalo es:
[160;164)
Los intervalos están definidos con el límite inferior cerrado, es decir que incluye el valor de dicho límite, y el límite inferior abierto, es decir, que ese valor no está incluido en el intervalo.
160,160,160,161,162,163,164,165,165,165,165,166,167,167,167,167,168,168,168,169,170, 170, 170,171,173,173,173,175,175,176.
f(1)= 6 (seis valores de estatura corresponden a este intervalo)
La sumatoria de todas las frecuencias absolutas debe dar por resultado el total de observaciones n= 30
Para el segundo intervalo [164;168)
f(2)= 10
2)
hi representa la frecuencia relativa simple y esta se calcula como fi/n
Por ejemplo para el primer intervalo:
h(1)= f(1)/n= 6/30= 0.20
Esta indica la proporción de que las alturas estén entre 160 y 164 cm.
En porcentaje se expresa como hi*100, para el primer intervalo: 0.20*100)= 20%
Para el segundo intervalo h(2)= f(2)/n= 10/30= 0.33 y su porcentaje es 33%
Como indican la proporción de cada categoría de la distribución, la sumatoria de las frecuencias relativas simples de todas las categorías debe ser 1.
3)
Como lo dice su nombre, esta frecuencia es acumulada y se calcula como la sumatoria de las frecuencias absolutas simples, para el primer intervalo, dado que previo a él no hay "nada" es igual a la frecuencia absoluta simple:
F(1)= f(1)
Para el segundo intervalo, es la frecuencia absoluta simple del primer intervalo más la frecuencia relativa simple del segundo intervalo:
F(2)= f(1) + f(2)= 6 + 10= 16
4)
Esta frecuencia también representa la sumatoria de las frecuencias relativas simples.
H(1)= h(1)= 0.20 como previo al primer intervalo no existe distribución definida, la frecuencia relativa acumulada es igual a la frecuencia relativa simple.
Para el segundo intervalo la frecuencia relativa acumulada es:
H(2)= h(1)+h(2)?= 0.20+0.33= 0.57
Adjunta a la respuesta encontrarás la tabla completa.
5)
Como no específica medidas de tendencia central requeridas, voy a calcular la media, mediana y modo utilizando la tabla.
Media
X[barra]= (∑x'fi)/n= ∑x'*hi
Dónde x' representa la marca de clase de cada intervalo. Para calcular la marca de clase de los intervalos debes realizar un promedio entre sus límites y su valor siempre debe encontrarse dentro de los límites del intervalo. Si no es así, has cometido un error de cálculos:
(Limite inferior + Limite superior)/2
1. [160;164) x₁'= (160+164)/2= 162
2. [164;168) x₂'= 166
3. [168;172) x₃'= 170
4. [172;176) x₄'= 174
Una vez que calculaste las marcas de clase, puedes calcular la media:
X[barra]= ∑x'*hi= (162*0.20)+(166*0.33)+(170*0.27)+(174*0.20)= 167.88 cm
Mediana:
La mediana es el valor de la variable que divide a la muestra en dos (50%-50%).
Para poder calcularla primero debes identificar su posición, en este tipo de presentación, debes identificar el intervalo en el que se encuentra incluida la mediana.
Para muestras pares, la posición de la mediana se calcula como:
PosMe= n/2= 30/2= 15
Esto significa que la mediana corresponde a la 15va observación de la muestra, observando la columna de las frecuencias absolutas (simples o acumuladas) debes identificar cual es el intervalo de la mediana:
Al segundo intervalo se corresponde una frecuencia acumulada de 16, lo que significa que la posición de la mediana está incluida en este intervalo:
[164;168)
Entonces puedes calcular la mediana como:
[tex]Me= Li + c [\frac{PosMe-F_{(i-1)}}{f_i} ][/tex]
Dónde
Li: es el límite inferior del intervalo de mediana.
c: es la amplitud del intervalo
F₍i₋₁₎: frecuencia absoluta acumulada del intervalo anterior al intervalo mediana
fi: frecuencia absoluta del intervalo mediana
[tex]Me= 164 + 4 [\frac{15-6}{10} ]= 167.6[/tex]
Me= 167.6 cm, como puedes notar, el valor de la mediana se encuentra entre los límites del intervalo.
Modo o Moda:
El modo o la moda de una distribución corresponde al valor más observado, es decir, al valor con mayor frecuencia absoluta simple. Al igual que la media, para calcular el modo primero debes identificar el intervalo que lo contiene. En este caso, el intervalo modal será aquel con la mayor frecuencia absoluta simple.
[164;168)
La fórmula para calcular el modo es:
[tex]Md= Li + c[\frac{(f_{max}-f_{ant})}{(f_{max}-f_{ant})+(f_{max}-f_{post})} ][/tex]
Li: es el límite inferior del intervalo modal
c: es la amplitud del intervalo
[tex]f_{max}[/tex]: es la frecuencia absoluta simple del intervalo modal.
[tex]f_{ant}[/tex]: es la frecuencia absoluta simple del intervalo anterior al intervalo modal.
[tex]f_{post}[/tex]: es la frecuencia absoluta simple del intervalo posterior al intervalo modal.
[tex]Md= 164 + 4[\frac{10-6)}{(10-6)+(10-8)} ]= 164+4[\frac{4}{4+2} ]= 166.67[/tex]
Md= 166.67 cm
¡Espero que tengas un buen día!
In ΔHIJ, the measure of ∠J=90°, HI = 6.6 feet, and IJ = 2.9 feet. Find the measure of ∠H to the nearest degree.
Answer:
26
Step-by-step explanation:
Answer:
26
Step-by-step explanation:
sinH= hypotenuse/opposite = (2.9/6.6)
H = sin^-1 ( 2.9/6.6)
H=26.065≈26
which products result in a difference of of squares? check all that apply.
Answer:
B, D
Step-by-step explanation:
The product of a sum and a difference results in a difference of squares.
The product must be of the form (a + b)(a - b) to work.
Answer: B, D
Answer:
(w-2.5)(w+2.5) And (-4v-9)(-4v+9)
Step-by-step explanation:
E2020
Larry graphs the inequality x less-than negative 5 using the steps below. Step 1: Draw a number line, and place an open circle at –5. A number line going from negative 10 to 0. An open circle is at negative 5. Step 2: Shade to the left of –5 to represent less than –5. A number line going from negative 10 to 0. An open circle is at negative 5. Everything to the left of the circle is shaded. Step 3: Check work by substitution. x = negative 5 Negative 5 less-than negative 5 False Larry concludes that he must have shaded the number line in the wrong direction. Which best describes the situation? Larry’s graph is incorrect. He should have used a closed circle at –5. Larry’s graph is incorrect. He should have shaded to the right of –5 because the numbers less than –5 are to the right of –5. Larry’s graph is correct. He should have checked his work using a number to the left of –5. Larry’s graph is correct. He should have checked his work using a number to the right of –5.
Answer:
Larry’s graph is incorrect.He should used a closed circle at -5
Step-by-step explanation:
Answer:
A)Larry’s graph is incorrect. He should have used a closed circle at –5.
Step-by-step explanation:
a =4
5
b =3
2
Work out a - 2b as a column vector.
Answer:
[-2; 1 ] is the new column vector
Step-by-step explanation:
See explanation in the attachment.
The value of a-2b as a column vector is [tex]\left[\begin{array}{c}-2&1\end{array}\right][/tex] .
What is a matrix?A matrix is an arrangement of numbers, expressions or symbols arranged in rows and columns as a rectangular array. These rows and columns define the size or dimension of a matrix.
For the given situation,
The matrix is
[tex]a=\left[\begin{array}{c}4&5\end{array}\right][/tex] , [tex]b=\left[\begin{array}{c}3&2\end{array}\right][/tex]
The operation is a - 2b. The matrix becomes
⇒ [tex]a-2b=\left[\begin{array}{c}4&5\end{array}\right] -2\left[\begin{array}{c}3&2\end{array}\right][/tex]
⇒ [tex]a-2b=\left[\begin{array}{c}4&5\end{array}\right] -\left[\begin{array}{c}6&4\end{array}\right][/tex]
⇒ [tex]a-2b=\left[\begin{array}{c}-2&1\end{array}\right][/tex]
Hence we can conclude that the value of a-2b as a column vector is [tex]\left[\begin{array}{c}-2&1\end{array}\right][/tex] .
Learn more about matrices here
https://brainly.com/question/18291235
#SPJ3
the diagram shows a sector of circle radius 10 cm find the area of the sector to one decimal place
Answer:
314 cm²
Step-by-step explanation:
Area of a circle is A= πr²
pi is 3.14 and radius is 10:
A= 3.14(10)²
A= 314
what is the equation of a straight line is parallel to y = 4x-1?
Answer: i dont know
Step-by-step explanation:
The mean SAT score in mathematics, M, is 600. The standard deviation of these scores is 48. A special preparation course claims that its graduates will score higher, on average, than the mean score 600. A random sample of 70 students completed the course, and their mean SAT score in mathematics was 613.
a) At the 0.05 level of significance, can we conclude that the preparation course does what it claims? Assume that the standard deviation of the scores of course graduates is also 48.
Answer:
Step-by-step explanation:
The mean SAT score is [tex]\mu=600[/tex], we are going to call it \mu since it's the "true" mean
The standard deviation (we are going to call it [tex]\sigma[/tex]) is
[tex]\sigma=48[/tex]
Next they draw a random sample of n=70 students, and they got a mean score (denoted by [tex]\bar x[/tex]) of [tex]\bar x=613[/tex]
The test then boils down to the question if the score of 613 obtained by the students in the sample is statistically bigger that the "true" mean of 600.
- So the Null Hypothesis [tex]H_0:\bar x \geq \mu[/tex]
- The alternative would be then the opposite [tex]H_0:\bar x < \mu[/tex]
The test statistic for this type of test takes the form
[tex]t=\frac{| \mu -\bar x |} {\sigma/\sqrt{n}}[/tex]
and this test statistic follows a normal distribution. This last part is quite important because it will tell us where to look for the critical value. The problem ask for a 0.05 significance level. Looking at the normal distribution table, the critical value that leaves .05% in the upper tail is 1.645.
With this we can then replace the values in the test statistic and compare it to the critical value of 1.645.
[tex]t=\frac{| \mu -\bar x |} {\sigma/\sqrt{n}}\\\\= \frac{| 600-613 |}{48/\sqrt(70}}\\\\= \frac{| 13 |}{48/8.367}\\\\= \frac{| 13 |}{5.737}\\\\=2.266\\[/tex]
since 2.266>1.645 we can reject the null hypothesis.Answer:
The null hypothesis is that the SAT score is not significantly different for the course graduates.
Alternate hypothesis: there is a significant difference between the SAT score achieved by the course graduates as compared to the non-graduates.
Apply the t-test. The Test Statistic value comes out to be t = 1.738 and the p-value = 0.0844
Since the p-value is larger than 0.05, the evidence is weak and we fail to reject eh null hypothesis.
Hope that answers the question, have a great day!