A moderate wind accelerates a pebble over a horizontal xy plane with a constant acceleration a with arrow = (4.60 m/s2)i hat + (7.00 m/s2)j. At time t = 0, the velocity is (4.3 m/s)i hat. What are magnitude and angle of its velocity when it has been displaced by 11.0 m parallel to the x axis?

A Moderate Wind Accelerates A Pebble Over A Horizontal Xy Plane With A Constant Acceleration A With Arrow

Answers

Answer 1

Explanation:

Given

Acceleration of the pebble is

At t=0, velocity is

considering horizontal motion

[tex]\Rightarrow x=ut+0.5at^2 \\\Rightarrow 11=4.3t+0.5(4.6)t^2\\\Rightarrow 2.3t^2+4.3t-11=0\\\Rightarrow (t-1.4435)(t+3.3131)=0\\\Rightarrow t=1.44\ s\quad [\text{Neglecting negative time}]\\[/tex]

Velocity acquired during this time

[tex]\Rightarrow v_x=4.3+4.6\times 1.44\\\Rightarrow v_x=4.3+6.624\\\Rightarrow v_x=10.92\ s[/tex]

Consider vertical motion

[tex]\Rightarrow v_y=0+7(1.44)\\\Rightarrow v_y=10.08\ m/s[/tex]

Net velocity is

[tex]\Rightarrow v=\sqrt{10.92^2+10.08^2}\\\Rightarrow v=\sqrt{220.85}\\\Rightarrow v=14.86\ m/s[/tex]

Angle made is

[tex]\Rightarrow \tan \theta =\dfrac{10.08}{10.92}\\\\\Rightarrow \tan \theta =0.92307\\\\\Rightarrow \theta =42.7^{\circ}[/tex]


Related Questions

Part B
What is the approximate amount of thrust you need to apply to the lander to keep its velocity roughly constant? Explain why, using Newton's first
law of motion.

Answers

Answer:

Force is zero.

Explanation:

According to the Newton's second law, when an object is moving with an acceleration the force acting on the object is directly proportional to the rate of change of momentum of the object.

F = m a

if the object is moving with uniform velocity, the acceleration is zero, and thus, the force is also zero.  

Answer: Near the moon’s surface, a thrust over 11,250 N but under 13,500 N would make it travel at a constant vertical velocity.

Explanation: .Newton’s first law of motion states that an object in motion continues to move in a straight line at a constant velocity unless acted upon by an unbalanced force. In accordance with this law, the lunar lander moves in a downward direction toward the surface of the moon under the influence of force due to gravity. A thrust somewhere between 11,250 and 13,500 balances this gravitational force out.

If a 1.3 kg mass stretches a spring 4 cm, how much will a 5.8 kg mass stretch the
spring? Show MATH, answer and unit.

Answers

Answer:

17.8cm

Explanation:

1.3kg --> 4cm

1kg --> 3, 1/13cm

5.8kg --> 18.8cm

A point charge of -3.0 x 10-C is placed at the origin of coordinates. Find the clectric field at the point 13. X= 5.0 m on the x-axis.​

Answers

Answer:

-1.0778×10⁻¹⁰ N/C

Explanation:

Applying,

E = kq/r²................ equation 1

Where E = elctric field, q = charge, r = distance, k = coulomb's law

From the question,

Given: q = -3.0×10 C, r = 5.0 m

Constant: k = 8.98×10⁹ Nm²/C²

Substitute these values in equation 1

E = (-3.0×10)(8.98×10⁹)/5²

E = -1.0778×10⁻¹⁰ N/C

Hence the electric field on the x-axis is -1.0778×10⁻¹⁰ N/C

What are stepdown transformers used for

Answers

Answer:

Step down transformers are used in power adaptors and rectifiers to efficiently decrease the voltage. They are also used in electronic SMPS.

Explanation:

pls mark me as brainlist

Thanks a lot

If one lawn mower causes an 80-dB sound level at a point nearby, four lawnmowers together would cause a sound level of ____________ at that point. a.92 dB b.84 dB c.86 dB d.none of the above

Answers

Answer:

The intensity of 4 lawn movers is 86 dB.

Explanation:

Intensity of one lawnmower = 80 dB

Let the intensity is I.

Use the formula of intensity

[tex]dB = 10 log\left ( \frac{I}{Io} \right )\\\\80=10log\left ( \frac{I}{Io} \right )\\\\10^8 = \frac{I}{10^{-12}}\\\\I = 10^{-4} W/m^2[/tex]

Now the intensity of 4 lawn movers is

[tex]dB = 10 log\left ( \frac{4I}{Io} \right )\\\\dB=10log\left ( \frac{4\times10^{-4}}{10^{-12}} \right )\\\\dB = 86 dB\\[/tex]

Four toy racecars are racing along a circular race track. The cars start at the 3-o'clock position and travel CCW along the track. Car A is constantly 2 feet from the center of the race track and travels at a constant speed. The angle Car A sweeps out increases at a constant rate of 1 radian per second.

Required:
How many radians θ does car A sweep out in t seconds?

Answers

Answer:

in t seconds, Car A sweep out t radian { i.e θ = t radian }

Explanation:

Given the data in the question;

4 toy racecars are racing along a circular race track.

They all start at 3 o'clock position and moved CCW

Car A is constantly 2 feet from the center of the race track and moves at a constant speed

so maximum distance from the center = 2 ft

The angle Car A sweeps out increases at a constant rate of 1 radian per second.

Rate of change of angle = dθ/dt = 1

Now,

since dθ/dt = 1

Hence θ = t + C

where C is the constant of integration

so at t = 0, θ = 0, the value of C will be 0.

Hence, θ = t radian

Therefore, in t seconds, Car A sweep out t radian { i.e θ = t radian }

A body of mass 4kg is moving with a velocity of 108km/h . find the kenetic energy of the body.​

Answers

Answer:

KE = 2800 J

Explanation:

Usually a velocity is expressed as m/s. Then the energy units are joules.

[tex]\frac{108 km}{hr} * \frac{1000m}{1 km} * \frac{1 hour}{3600 seconds} =\frac{108*1000 m}{3600sec}[/tex]

v = 30 m / sec

KE = 1/2 * 4 * (30)^2

KE =2800 kg m^2/sec^2

KE = 2800 Joules

Help me plssssssss cause I’m struggling

Answers

Answer:

I am pretty sure it is C

Explanation:

It can be found all over the universe

I think it’s c but I am not sure

Thermometers and Temperature Scales
While traveling outside the United States, you feel sick. A companion gets you a thermometer, which says your temperature is 40.9. What scale is that on? What is your Fahrenheit temperature? Should you seek medical help?

Answers

Answer:

105.62°F

Explanation:

When the body temperature having fever is measured to be 40.9 on a scale then it must be a Celsius scale thermometer because 37°C is the normal temperature of a healthy human. In case of fever the given temperature is measured on a standard Celsius scale.

The relation between Fahrenheit and Celsius scale is:

[tex]\frac{C}{5}=\frac{F-32}{9}[/tex]

[tex]F=\frac{9C}{5} +32[/tex]

[tex]F=105.62^{o}F[/tex]

It is a high fever and an immediate medical help must be taken.

A student has to work the following problem: A block is being pulled along at constant speed on a horizontal surface a distance d by a rope supplying a force F at an angle of elevation q. The surface has a frictional force acting during this motion. How much work was done by friction during this motion? The student calculates the value to be –Fd sinq. How does this value compare to the correct value?
a. It is the correct value.
b. It is too high.
c. It is too low.
d. The answer cannot be found until it is known whether q is greater than, less than, or equal to 45°.

Answers

Answer:

D

The answer cannot be found until it is known whether q is greater than, less than, or equal to 45°.

Explanation:

Since block moves with constant speed

So, frictional force

f = FCosq

Work done by friction

W = - fd

W = - fd Cos q

The answer may be greater or less than - fdSinq. It depends on the value of q which is less than, or equal to 45°.

What is the minimum angular spread (in rad) of a 534 nm wavelength manganese vapor laser beam that is originally 1.19 mm in diameter

Answers

Answer:

Minimum angular spread (in rad) = 547.45 x 10⁻⁶ rad

Explanation:

GIven;

Wavelength of manganese vapor laser beam = 534 nm = 534 x 10⁻⁹ m

Diameter =  1.19 mm = 1.19 x 10⁻³ m

Find:

Minimum angular spread (in rad)

Computation:

Minimum angular spread (in rad) = 1.22[Wavelength / Diameter]

Minimum angular spread (in rad) = 1.222[(534 x 10⁻⁹) / (1.19 x 10⁻³)]

Minimum angular spread (in rad) = 2[448.73 x 10⁻⁶]

Minimum angular spread (in rad) = 547.45 x 10⁻⁶ rad

As you move farther away from a source emitting a pure tone, the ___________ of the sound you hear decreases.

Answers

Answer:

frequency

Explanation:

The phenomenon of apparent change in frequency due to the relation motion between the source and the observer is called Doppler's effect.

So, when we move farther, the frequency of sound decreases. The formula of the Doppler's effect is  

[tex]f' = \frac{v + v_o}{v+ v_s} f[/tex]

where, v is the velocity of sound, vs is the velocity of source and vo is the velocity of observer, f is the true frequency. f' is the apparent frequency.

What is the energy equivalent of an object with a mass of 2.5 kg? 5.5 × 108 J 7.5 × 108 J 3.6 × 1016 J 2.25 × 1017 J

Answers

Answer:

E = m c^2 = 2.5 * (3 * 10E8)^2 = 2.25 * 10E17 Joules

Answer:

The answer is D. 2.25 × 1017 J

Explanation:

got it right on edge 2021

Two sinusoidal waves have the same frequency and wavelength. The wavelength is 20 cm. The two waves travel from their respective sources and reach the same point in space at the same time, resulting in interference. One wave travels a larger distance than the other. For each of the possible values of that extra distance listed below, identify whether the extra distance results in maximum constructive interference, maximum destructive interference, or something in-between.
a. 10 cm - (A) in-between (2) maximum destructive (3) maximum constructive.
b. 15 cm - (A) in-between (2) maximum destructive (3) maximum constructive.
c. 20 cm - (A) in-between (2) maximum destructive (3) maximum constructive.
d. 30 cm - (A) in-between (2) maximum destructive (3) maximum constructive.
e. 35 cm - (A) in-between (2) maximum destructive (3) maximum constructive.
f. 40 cm - (A) in-between (2) maximum destructive (3) maximum constructive.

Answers

Answer:

Explanation:

When the path difference is equal to wave length or its integral multiple, constructive interference occurs . If it is odd multiple of half wave length , then destructive interference occurs.

For constructive interference , path diff = n λ

For destructive interference path diff = ( 2n+ 1 ) λ /2

where λ is wave length of wave , n is an integer.

a )

path diff = 10 cm which is half the wavelength , so maximum destructive interference will occur.

b )

path diff = 15 cm which is neither  half the wavelength nor full wavelength , so in between is the right option.

c )

path diff = 20 cm which is equal to  the wavelength , so maximum constructive  interference will occur.

d)

path diff = 30 cm which is 3 times half the wavelength , so maximum destructive interference will occur.

e)

path diff = 35 cm which is neither integral multiple of half the wavelength , nor integral multiple of wavelength so in between is th eright answer.

f )

path diff = 40 cm which is 2 times the wavelength , so maximum constructive  interference will occur

Two pendulums have the same dimensions (length {L}) and total mass (m). Pendulum A is a very small ball swinging at the end of a uniform massless bar. In pendulum B, half the mass is in the ball and half is in the uniform bar.
1. Find the period of pendulum A for small oscillations.
2. Find the period of pendulum B for small oscillations.

Answers

Answer:

1) [tex]T_{A} = 2\pi\cdot \sqrt{\frac{l}{g} }[/tex], 2) [tex]T_{B} \approx 1.137\cdot T_{A}[/tex], where [tex]T_{A} = 2\pi\cdot \sqrt{\frac{l}{g} }[/tex].

Explanation:

1) Pendulum A is a simple pendulum, whose period ([tex]T_{A}[/tex]) is determined by the following formula:

[tex]T_{A} = 2\pi\cdot \sqrt{\frac{l}{g} }[/tex] (1)

Where:

[tex]l[/tex] - Length of the massless bar.

[tex]g[/tex] - Gravitational acceleration.

2) Pendulum B is a physical pendulum, whose period ([tex]T_{B}[/tex]) is determined by the following formula:

[tex]T_{B} = 2\pi \cdot \sqrt{\frac{I_{O}}{m\cdot g\cdot l} }[/tex] (2)

Where:

[tex]m[/tex] - Total mass of the pendulum.

[tex]g[/tex] - Gravitational acceleration.

[tex]l[/tex] - Length of the uniform bar.

[tex]I_{O}[/tex] - Moment of inertia of the pendulum with respect to its suspension axis.

The moment of inertia can be found by applying the formulae of the moment of inertia for a particle and the uniform bar and Steiner's Theorem:

[tex]I_{O} = \frac{1}{2} \cdot m\cdot l^{2}+\frac{1}{24}\cdot m\cdot l^{2} + \frac{3}{4}\cdot m\cdot l^{2}[/tex]

[tex]I_{O} = \frac{31}{24}\cdot m\cdot l^{2}[/tex] (3)

By applying (3) in (2) we get the following expression:

[tex]T_{B} = 2\pi \cdot \sqrt{\frac{\frac{31}{24}\cdot m \cdot l^{2} }{m\cdot g \cdot l} }[/tex]

[tex]T_{B} = 2\pi \cdot \sqrt{\frac{31\cdot l}{24\cdot g} }[/tex]

[tex]T_{B} = \sqrt{\frac{31}{24} } \cdot \left(2\pi \cdot \sqrt{\frac{l}{g} }\right)[/tex]

[tex]T_{B} \approx 1.137\cdot T_{A}[/tex]

1. The period of pendulum A for small oscillations is  

[tex]T_A=2\pi\sqrt{\dfrac{L}{g}}[/tex]

2. The period of pendulum B for small oscillations.

[tex]T_B=1.137.T_A[/tex]

What is simple harmonic motion?

Simple harmonic motion is the periodic motion or back and forth motion of any object with respect to its equilibrium or mean position. The restoring force is always acting on the object which try to bring it to the equilibrium.

1) Pendulum A is a simple pendulum, whose period () is determined by the following formula:

[tex]T_A=2\pi\sqrt{\dfrac{L}{g}}[/tex]

Where:

l - Length of the massless bar.

g - Gravitational acceleration.

2) Pendulum B is a physical pendulum, whose period () is determined by the following formula:

[tex]T_A=2\pi\sqrt{\dfrac{I_o}{mgl}}[/tex] .............................2

Where:

m - Total mass of the pendulum.

g - Gravitational acceleration.

l - Length of the uniform bar.

Io- Moment of inertia of the pendulum with respect to its suspension axis.

The moment of inertia can be found by applying the formulae of the moment of inertia for a particle and the uniform bar and Steiner's Theorem:

[tex]I_o=\dfrac{1}{2}ml^2+\dfrac{1}{24}ml^2+\dfrac{3}{4}ml^2[/tex]

[tex]I_o=\dfrac{31}{24}ml^2[/tex]..................................3

By applying (3) in (2) we get the following expression:

[tex]T_B=2\pi\sqrt{\dfrac{\frac{31}{24}ml^2}{mgl}[/tex]

[tex]T_B=2\pi\sqrt{\dfrac{31l}{24g}}[/tex]

[tex]T_B=\sqrt{\dfrac{31}{24}}. (2\pi\sqrt{\dfrac{l}{g}})[/tex]

[tex]TB=1.137.T_A[/tex]

Thus to know more about Simple harmomnic motion follow

https://brainly.com/question/17315536

A 1200 kg car traveling east at 4.5 m/s crashes into the side of a 2100 kg truck that is not moving. During the collision, the vehicles get stuck together. What is their velocity after the collision? A. 2.9 m/s east B. 1.6 m/s east m C. 2.6 m/s east D. 1.8 m/s east​

Answers

Answer:

Explanation:

This is a simple Law of Momentum Conservation problem of the inelastic type. The equation for this is

[tex][m_1v_1+m_2v_2]_b=[(m_1+m_2)v]_a[/tex]  Filling in:

[tex][1200(4.5)+2100(0)]=[(1200+2100)v][/tex] which simplifies to

5400 + 0 = 3300v

so v = 1.6 m/s to the east, choice B

(b) Name the devices used to measure the volume of liquid.​

Answers

Answer:

Liquid volume is usually measured using either a graduated cylinder or a buret. As the name implies, a graduated cylinder is a cylindrical glass or plastic tube sealed at one end, with a calibrated scale etched (or marked) on the outside wall.

A system is acted on by its surroundings in such a way that it receives 50 J of heat while simultaneously doing 20 J of work. What is its net change in internal energy

Answers

Answer:

30J

Explanation:

Given data

The total quantity of heat recieved= 50J

Quantity of heat used to do work= 20J

Hence the net change is

ΔU= Total Heat - Net work

ΔU= 50-20

ΔU= 30J

Hence the change in the internal energy is 30J

A mixture of gaseous reactants is put into a cylinder, where a chemical reaction turns them into gaseous products. The cylinder has a piston that moves in or out, as necessary, to keep constant pressure on the mixture of 1 atm. The cylinder is also submerged in a large insulated water bath. The temperature of the water bath is monitored, and it is determined from this data that 133.0 kJ of heat flows into the system during the reaction. The position of the piston is also monitored, and it is determined from the data that the piston does 241.0 kJ of work on the system during the reaction.

a. Does the temperature of the water bath go up or down?
b. Does the piston move in or out?
c. Does heat flow into or out of the gaseous mixture?
d. How much heat flows?

Answers

I feel like it would be B makes the most sense not sure tho

A football quarterback runs 15.0 m straight down the playing field in 3.00 s. He is then hit and pushed 3.00 m straight backward in 1.71 s. He breaks the tackle and runs straight forward another 24.0 m in 5.20 s. Calculate his average velocity (in m/s) for the entire motion. (Assume the quarterback's initial direction is positive. Indicate the direction with the sign of your answer.)

Answers

Answer:

Average Velocity = 3.63 m/s

Explanation:

First, we will calculate the total displacement of the quarterback, taking forward direction as positive:

Total Displacement = 15 m - 3 m + 24 m = 36 m

Now, we will calculate the total time taken for this displacement:

Total Time = 3 s + 1.71 s + 5.2 s = 9.91 s

Therefore, the average velocity will be:

[tex]Average\ Velocity = \frac{Total\ Displacement}{Total\ Time}\\\\Average\ Velocity = \frac{36\ m}{9.91\ s}[/tex]

Average Velocity = 3.63 m/s

Water is falling on the blades of a turbine at a rate of 100 kg/s from a certain spring. If the height of spring be 100m, then the power transferred to the turbine will be: a) 100 KW b) 10 KW c) 1 KW d) 100 W​

Answers

Answer:

Natae Si Jordan Kaya Sya Napaihe

Explanation:

haha

A 9.0 V battery is connected across two resistors in series. If the resistors have resistances of and what is the voltage drop across the resistor?
Select one:

A. 4.6 V B. 9.4 V C. 8.6 V D. 4.4 V​

Answers

Answer:

the answer to the question is known as D

3. Calculate the force it would take to accelerate a 50 ka bike at a rate of 3 m/s2 (6 points)

Answers

Answer:

150 N

Explanation:

Given that,

Acceleration (a) = 3 m/s²Mass of the bike (m) = 50 kg

We are asked to calculate force required.

[tex]\longrightarrow[/tex] F = ma

[tex]\longrightarrow[/tex] F = (50 × 3) N

[tex]\longrightarrow[/tex] F = 150 N

An electron has an initial speed of 8.06 x10^6 m/s in a uniform 5.60 x 10^5 N/C strength electic field.The field accelerates the electron in the direction opposite to its initial velocity.
(a) What is the direction of the electric field?
i. opposite
ii. direction to the electron's initial velocity
iii. same direction as the electron's initial velocity
iv. not enough information to decide
(b) How far does the electron travel before coming to rest? m
(c) How long does it take the electron to come to rest? s
(d) What is the electron's speed when it returns to its starting point?

Answers

Answer:

Explanation:

a)

The force on electron acts opposite to the velocity , and direction of force on electron is always opposite to direction of electric field .

Hence direction of electric field must be in the same  in which electrons travels.

Hence option iii is correct.

b )

deceleration a = force / mass

= qE / m

= 1.6 x 10⁻¹⁶ x 5.6 x 10⁵ / 9.1 x 10⁻³¹

= .98 x 10²⁰ m /s²

v² = u² - 2 a s

0 = (8.06 x 10⁶ )² - 2 x .98 x 10²⁰ s

s = 64.96 x 10¹² / 1.96 x 10²⁰

= 33.14 x 10⁻⁸ m

c ) time required

= 8.06 x 10⁶ / .98 x 10²⁰

= 8.22 x 10⁻¹² s .

d ) Its speed will be same as that in the beginning ie 8.06 x 10⁶ m/s .

Answer:

(a) Option (i)

(b) 6.6 x 10^-4 m  

(c) 8.2 x 10^-11 s

Explanation:

initial velocity, u = 8 .06 x 10^6 m/s

Electric field, E = 5.6 x 10^5 N/C

(a) The direction of field is opposite.

Option (i).

(b) Let the distance is s.  

Use third equation of motion

[tex]v^2 = u^2 + 2 a s \\\\0 = u^2 - 2 \times \frac{qE}{m}\times s\\\\8.06\times 10^6\times 8.06\times 10^6 = \frac {1.6\times 10^{-19}\times 5.6\times 10^5}{9.1\times 10^{-31}} s\\\\s = 6.6\times 10^{-4} m[/tex]

(c) Let the time is t.

Use first equation of motion.

[tex]v = u + a t \\\\0 = u - \times \frac{qE}{m}\times t\\\\8.06\times 10^6 = \frac {1.6\times 10^{-19}\times 5.6\times 10^5}{9.1\times 10^{-31}} t\\\\t = 8.2\times 10^{-11} s[/tex]

A 31 kg block is initially at rest on a horizontal surface. A horizontal force of 83 N is required to set the block in motion. After it is in motion, a horizontal force of 55 N i required to keep it moving with constant speed. From this information, find the coefficients of static and kinetic friction

Answers

Answer:

The static and kinetic coefficients of friction are 0.273 and 0.181, respectively.

Explanation:

By Newton's Laws of Motion and definition of maximum friction force, we derive the following two formulas for the static and kinetic coefficients of friction:

[tex]\mu_{s} = \frac{f_{s}}{m\cdot g}[/tex] (1)

[tex]\mu_{k} = \frac{f_{k}}{m\cdot g}[/tex] (2)

Where:

[tex]\mu_{s}[/tex] - Static coefficient of friction, no unit.

[tex]\mu_{k}[/tex] - Kinetic coefficient of friction, no unit.

[tex]f_{s}[/tex] - Static friction force, in newtons.

[tex]f_{k}[/tex] - Kinetic friction force, in newtons.

[tex]m[/tex] - Mass, in kilograms.

[tex]g[/tex] - Gravitational constant, in meters per square second.

If we know that [tex]f_{s} = 83\,N[/tex], [tex]f_{k} = 55\,N[/tex], [tex]m = 31\,kg[/tex] and [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], then the coefficients of friction are, respectively:

[tex]\mu_{s} = \frac{83\,N}{(31\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)}[/tex]

[tex]\mu_{s} = 0.273[/tex]

[tex]\mu_{k} = \frac{55\,N}{(31\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)}[/tex]

[tex]\mu_{k} = 0.181[/tex]

The static and kinetic coefficients of friction are 0.273 and 0.181, respectively.

Three 30 g metal balls, one of aluminum, copper and lead, are placed in a large beaker of hot water for a few minutes. [The specific heats of aluminum, copper, and lead are 903, 385, and 130 J / (kg ° C), respectively].
to. Which of the balls, if any, will reach the highest temperature? Explain.
b. Which of the balls, if any, will have the most heat energy? Explain.

Answers

Answer:

The answer is below

Explanation:

Specific heat capacity is an intensive property of a material. The specific heat of a material is the amount of energy required to raise the temperature of one unit mass m of material by one unit of temperature.

a) Temperature is inversely proportional to specific heat capacity. If the same amount of heat is applied to all three balls, the ball that will reach the highest temperature is the ball with the least specific heat capacity.

Hence lead will have the highest temperature since it has the least specific heat capacity.

b) The quantity of heat is directly proportional to the specific heat capacity. Hence if all balls experience the same temperature change, the ball that have the most energy will be that with the highest specific heat capacity.

Hence aluminum will have the most heat since it has the highest specific heat capacity.

An inductor of inductance 0.02H and capacitor of capatance 2uF are connected in series to an a.c. source of frequency 200 Hz- Calculate the Impedance in the circuit . TC​

Answers

Explanation:

Given:

L = 0.02 H

C = [tex]2\:\mu \text{F}[/tex]

f = 200 Hz

The general form of the impedance Z is given by

[tex]Z = \sqrt{R^2 + (X_L - X_C)^2}[/tex]

Since this is a purely inductive/capacitive circuit, R = 0 so Z reduces to

[tex]Z = \sqrt{(X_L - X_C)^2} = \sqrt{\left(\omega L - \dfrac{1}{\omega C} \right)^2}[/tex]

[tex]\:\:\:\:\:\:\:= \sqrt{\left(2 \pi L - \dfrac{1}{2 \pi f C} \right)^2}[/tex]

[tex]\:\:\:\:\:\:\:= \sqrt{\left[2 \pi (200\:\text{Hz})(0.02\:\text{H}) - \dfrac{1}{2 \pi (200\:\text{Hz})(2×10^{-6}\:\text{F})} \right]^2}[/tex]

[tex]\:\:\:\:\:\:\:= \sqrt{(25.13\:\text{ohms} - 397.89\:\text{ohms})^2}[/tex]

[tex]\:\:\:\:\:\:\:=372.66\:\text{ohms}[/tex]

A seesaw made of a plank of mass 10.0 kg and length 3.00 m is balanced on a fulcrum 1.00 m from one end of the plank. A 20.0-kg mass rests on the end of the plank nearest the fulcrum. What mass must be on the other end if the plank remains balanced?

Answers

Answer:

7.5 kg

Explanation:

We are given that

[tex]m_1=10 kg[/tex]

Length of plank, l=3 m

Distance of fulcrum from one end of the plank=1 m

[tex]m_2=20 kg[/tex]

We have to find the mass must be on the other end if the plank remains balanced.

Let m be the mass must be on the other end if the plank remains balanced.

In balance condition

[tex]20\times 1=10\times (1.5-1)+m\times (1.5+0.5)[/tex]

[tex]20=10(0.5)+2m[/tex]

[tex]20=5+2m[/tex]

[tex]2m=20-5=15[/tex]

[tex]\implies m=\frac{15}{2}[/tex]

[tex]m=7.5 kg[/tex]

Hence, mass 7.5 kg   must be on the other end if the plank remains balanced.

Answer:

The mass at the other end is 7.5 kg.

Explanation:

Let the mass is m.

Take the moments about the fulcrum.

20 x 1 = 10 x 0.5 + m x 2

20 = 5 + 2 m

2 m = 15

m = 7.5 kg

Drawing a shows a displacement vector (450.0 m along the y axis). In this x, y coordinate system the scalar components are Ax 0 m and Ay 450.0 m. Suppose that the coordinate system is rotated counterclockwise by 35.0, but the magnitude (450.0 m) and direction of vector remain unchanged, as in drawing b. What are the scalar components, Ax and Ay, of the vector in the rotated x, y coordinate system

Answers

Answer:

x ’= 368.61 m,  y ’= 258.11 m

Explanation:

To solve this problem we must find the projections of the point on the new vectors of the rotated system  θ = 35º

            x’= R cos 35

            y’= R sin 35

           

The modulus vector can be found using the Pythagorean theorem

            R² = x² + y²

            R = 450 m

we calculate

            x ’= 450 cos 35

            x ’= 368.61 m

            y ’= 450 sin 35

            y ’= 258.11 m

The mass per unit length of the rope is 0.0500 kg/m. Find the tension. Express your answer in newtons.

Answers

Complete question:

A transverse wave on a rope is given by [tex]y \ (x, \ t) = (0.75 \ cm) \ cos \ \pi[(0.400 \ cm^{-1}) x + (250 \ s^{-1})t][/tex]. The mass per unit length of the rope is 0.0500 kg/m. Find the tension. Express your answer in newtons.

Answer:

The tension on the rope is 1.95 N

Explanation:

The general equation of a progressive wave is given as;

[tex]y \ (x,t) = A \ cos(kx \ + \omega t)[/tex]

Compare the given equation with the general equation of wave, the following parameters will be deduced.

A = 0.75 cm

k = 0.400π cm⁻¹

ω = 250π s⁻¹

The frequency of the wave is calculated as;

ω = 2πf

2πf = 250π

2f = 250

f = 250/2

f = 125 Hz

The wavelength of the wave is calculated as;

[tex]\lambda = \frac{2\pi}{k} \\\\\lambda = \frac{2\pi }{0.4 \pi} = 5 \ cm = 0.05 \ m[/tex]

The velocity of the wave is calculated as;

v = fλ

v = 125 x 0.05

v = 6.25 m/s

The tension on the rope is calculated as;

[tex]v = \sqrt{\frac{T}{\mu}} \\\\where;\\\\T \ is \ the \ tension \ of \ the \ rope\\\\\mu \ is \ the \ mass \ per \ unit \ length = 0.05 \ kg/m\\\\v^2 = \frac{T}{\mu} \\\\T = v^2 \mu\\\\T = (6.25)^2\times (0.05)\\\\T = 1.95 \ N[/tex]

Therefore, the tension on the rope is 1.95 N

Other Questions
Write a python application that allows a user to enter any number of student test scores until the user enters 999. If the score entered is less than 0 or more than 100, display an appropriate message and do not use the score. After all the scores have been entered, display the number of scores entered and the arithmetic average. In aDC source, which has more cuwent?(i)R L Circuit(ii)RC Circuit (series)(iii)LC Cirenit (series)(iv)RLC Circuit (series) Is AFGH ~ AJKL? If so, identify the similarity postulate or theorem thatapplies.GK1063030A. Similar - SASB. Cannot be determinedC. Similar - SSSD. Similar - AA I am Your Crush boy you have never seen a boy like me if you will see me you will fall in my love. come zom Id- 6622308635 pas- 6UC3yE The sum of the digits in a 2 digit number is 5. If the number is subtracted by 9 then the digits will be reversed. Find the number. If the tens digit is x then what is the equation? The Yom Kippur war in the 1970s resulted in this organization's rise to power in regards to global oil production. A. NASA B. NATO . D. USSR 2) There are 40 boys and 60 girls in a class of students. What is the ratio of girls to students Which statement best describes a difference between presidential andparliamentary democracies?A. In a parliamentary democracy, the executive and legislativebranches are joined. In a presidential democracy, the two branchesare separate.B. In a presidential democracy, the head of government is a memberof the legislature. In parliamentary government, citizens directlyelect the head of government. C. In a presidential democracy, citizens are able to vote for theira legislators. In a parliamentary democracy, citizens are not able tovote for their legislators.D. In a parliamentary democracy, citizens vote directly for the head ofgovernment. In a presidential democracy, citizens do not votedirectly for the head of government. What is the domain of the function shown in the table HELP The graph of y = x4 2x2 + 1 is shown.On a coordinate plane, a curved line has two minimum values at (negative 1, 0) and (1, 0) and one maximum value. Point A is at (negative 0.5, 0.5), point B is at (0, 1), point C is at (1, 0), and point D is at (1.6, 3).Which point is a relative maximum?ABCD which of the following is a biotic factor A)light intensity B) food supply C) pollution D) temperature HELP BELPIdentify the range of the function shown in the graph In which stage of the stress response do our bodies release the hormone adrenaline 6) It is a problem that needs to be dealt -a) withb) forc) ofd) toe) in A person is standing close to the edge on a 56 foot building and throws the ball vertically upward. The quadratic function h(t)=-16^2+104t+56 models the balls height above the ground,h(t),in feet, T seconds after it was thrown what is the maximum height of ball.=How many seconds did it take to hit the ground= Please help! Dr. Smith has prescribed an antianxiety drug to help his client reduce her fear of crowds. Dr. Smith is using Based on the interview videos you have viewed, summarize what you believe the 3 most prominent characteristics of a human service professional should be. How do these characteristics compare to those desirable for Christians, as described in Scripture If you set the Decimal Places property to 0 for a Price field, and then enter 750.25 in the field, what does Access display in the datasheet Assume a market for a normal good is currently in equilibrium. If the government increases the taxes that firms must pay, then: If the angles (4x + 4) and (6x 4) are the supplementary angles, find the value of x.