A flask contains two compartments (A and B) with equal volumes of solution separated by a semipermeable membrane. Which diagram represents the final levels of liquid when A and B contain each of the following solutions? [1] Diagram [1] Diagram [2] Diagram [3] 4 3 [2] a 3% (wlv) sucrose 1% (wlv) sucrose Diagram [3] b 0.30 M NaCl 0.20 M CaClz [3] C 0.25 M MgClz 0.25 M NazSO4 d. 2.0 MKCI 2.0 M NazSO4

Answers

Answer 1

For diagram [1], the final levels of liquid will be equal in both compartments regardless of the solution added.
For diagram [2]a, the final level of liquid in compartment A will be higher than in compartment B, as the 3% (wlv) sucrose solution is less dense than the 1% (wlv) sucrose solution.
For diagram [3]b, the final level of liquid in compartment A will be lower than in compartment B, as the 0.20 M CaCl2 solution is more dense than the 0.30 M NaCl solution.
For diagram [3]c, the final levels of liquid will be equal in both compartments, as both solutions have the same concentration and density.
For diagram [3]d, the final level of liquid in compartment A will be higher than in compartment B, as the 2.0 M KCl solution is less dense than the 2.0 M Na2SO4 solution.

To know more about  solution click here:

brainly.in/question/41751148

#SPJ11


Related Questions

an ether substituent on a benzene ring directs the second substituent to what position?

Answers

An ether substituent on a benzene ring is an electron-donating group, which means it will direct the second substituent to the ortho- or para- position.

An ether substituent on a benzene ring acts as an electron-donating group, which directs the second substituent to the ortho and para positions. This is due to the resonance effect of the ether group, which increases electron density at the ortho and para positions on the benzene ring, making these sites more nucleophilic and thus more reactive towards electrophilic substitution reactions.

If the ether group is located at the ortho position (1,2-position) or the para position (1,4-position), it is considered an activating group, and it will direct the second substituent to the meta position (1,3-position). This is because the ether group is electron-donating, which increases the electron density of the ring, making the meta position more electron deficient and thus more attractive to electron-withdrawing substituents.

So, the orientation of the second substituent on a benzene ring with an ether substituent depends on the position of the ether group on the ring.

To know more about Ether refer here :

https://brainly.com/question/20772030

#SPJ11

Just as the ether substituent, many other groups also influence the position of supplementary substituents.

An ether substituent on a benzene ring directs the second substituent to the ortho or para position due to increased electron density.

An ether substituent on a benzene ring directs the second substituent to the ortho or para position.

This happens because an ether group (R-O-) is an electron-donating group that activates the benzene ring, increasing its electron density.

As a result, electrophilic substitution reactions, such as the addition of a second substituent, are more likely to occur at positions ortho or para to the ether group.

An ether substituent on a benzene ring directs the second substituent to the ortho or para position due to its electron-releasing nature.

This effect is crucial in predicting products of aromatic substitution reactions. It's the essence of various behaviors in organic chemistry.

In the field of organic chemistry, the positioning of substituents on a benzene ring can significantly impact the characteristics of the compound.

When we talk about an ether substituent on a benzene ring, it behaves as an ortho-, para- directing group. This means that it tends to direct the second substituent to the ortho or para position relative to itself on the benzene ring.

These positions are neighboring to the bonded carbon (ortho) and opposite to it (para).

This directionality arises from the electron-releasing nature of the ether group, which increases electron density at the ortho and para positions, making these positions more susceptible to electrophilic attack.

For example, If we have an anisole (methoxybenzene), which is a type of ether, the methoxy (OCH3) group would direct a second substituent to the ortho and para positions on the benzene ring.

In organic chemistry, understanding these directing effects is crucial in predicting the products of aromatic substitution reactions.

Just as the ether substituent, many other groups also influence the position of supplementary substituents.

To Know More about influence visit:

brainly.com/question/29023957

SPJ11


calculate the wavelength (in m) of a football (425 g) thrown by an nfl quarterback traveling at 50 mph.

Answers

The wavelength of the football thrown by an NFL quarterback traveling at 50 mph is approximately 6.99 x 10^-35 m.

To calculate the wavelength of the football, we need to first calculate its velocity in meters per second.

We can convert 50 mph to meters per second as follows:

1 mph = 0.44704 m/s (conversion factor)

50 mph = 50 x 0.44704 m/s

50 mph = 22.352 m/s (velocity of the football)

Next, we need to calculate the momentum of the football using the equation:

p = mv , where p is momentum, m is mass, and v is velocity.

We can convert the mass of the football from grams to kilograms as follows:

425 g = 0.425 kg (conversion factor)

So, the momentum of the football is:

p = mv

p = 0.425 kg x 22.352 m/s

p = 9.498 kg*m/s

Finally, we can calculate the wavelength of the football using the equation:

wavelength = h/p

where h is Planck's constant (6.626 x 10^-34 J*s).

So, the wavelength of the football is:

wavelength = h/p

wavelength = (6.626 x 10^-34 Js)/(9.498 kgm/s)

wavelength = 6.99 x 10^-35 m

For such more questions on wavelength

https://brainly.com/question/28995449

#SPJ11

The wavelength of the football is λ = 7.17 * 10^-{26} nm .

The wavelength of the football can be calculated using the de Broglie wavelength equation: λ = h/mv, where h is Planck's constant, m is the mass of the object, v is the velocity of the object.
First, we need to convert the mass of the football from grams to kilograms: 425 g = 0.425 kg.
Next, we need to convert the velocity from mph to m/s: 50 mph = 22.35 m/s.
Now we can plug in the values into the equation:
λ = \frac{(6.626 * 10^{-34} J*s) }{ (0.425 kg * 22.35 m/s) }
λ = 7.17 * 10^{-26} nm
Therefore, the correct answer is C) 7.17 * 10^-{26} nm.
It's important to note that this calculation assumes that the football is behaving as a wave, which is not necessarily the case in reality. However, this calculation can still provide a useful estimate of the football's wavelength.

learn more about the wavelength refer: https://brainly.com/question/12924624

#SPJ11

Identify the body's fuel source as its metabolic pathways shift from feasting to fasting. Glycogen stores Body fat stores Body protein Fuel for the body 2 to 3 hours after eating Fuel for the body after 24 hours of starvation Fuel for the brain 2 to 3 hours after eating Fuel for the brain after 24 hours of starvation O

Answers

The body's fuel source as its metabolic pathways shift from feasting to fasting. Glycogen stores Body fat stores b. Fuel for the body after 24 hours of starvation

Glycogen stores, primarily in the liver and muscles, are the primary fuel source for both the body and the brain. Glycogen is a stored form of glucose that is quickly mobilized for energy when needed. After 24 hours of starvation, glycogen stores are depleted, and the body turns to its fat stores for energy. Fatty acids are released and converted to ketone bodies, which can be used as fuel by most tissues, including the brain.

However, ketone bodies cannot fully meet the brain's energy demands, so the body also breaks down its own proteins to produce glucose, primarily from skeletal muscle. In summary, during the first few hours after eating, glycogen stores provide b. fuel for the body and brain. After 24 hours of starvation, body fat stores become the primary energy source, while the brain relies on both ketone bodies and glucose derived from the breakdown of body proteins.

To learn more about glycogen here:

https://brainly.com/question/2911953

#SPJ11

The following table gives the millions of metric tons of carbon dioxide (CO2) emissions from biomass energy combustion in a certain country for selected years from 2010 and projected to 2032.
Year CO2
emissions Year CO2
emissions
2010 339.5 2022 556.2
2012 362.5 2024 593.9
2014 395.1 2026 628.7
2016 421.8 2028 664.1
2018 454.1 2030 704.1
2020 498.4 2032 742.7
(b) Find an exponential function that models the data. (Round all numerical values to three decimal places.)
y =

Answers

(b) The exponential function that models the data is:  y = [tex]339.5(1.048)^t[/tex]

To find an exponential function that models the data, we can use the formula for exponential growth: y = [tex]a(1+r)^t[/tex], where y is the CO2 emissions in millions of metric tons, t is the year (with 2010 being t=0), a is the initial CO2 emissions, and r is the annual growth rate as a decimal.

Using the given data, we can find the initial CO2 emissions, a, by plugging in t=0:

339.5 = a(1+r)⁰
a = 339.5

Now, we can use any two points from the table to solve for the growth rate, r. Let's use the points for 2010 and 2022:

556.2 = 339.5(1+r)¹²

Dividing both sides by 339.5 and taking the twelfth root of both sides, we get:

(1+r) = [tex](556.2/339.5)^{(1/12)[/tex]
r = 0.048

Now we have all the values we need to write the exponential function:

y = [tex]339.5(1+0.048)^t[/tex]

Rounding all numerical values to three decimal places, the exponential function that models the data is:

y = [tex]339.5(1.048)^t[/tex]

To know more about exponential function, refer to the link below:

https://brainly.com/question/15352175#

#SPJ11

2 h2o2 thermodynamically favorable. what are the signs of g and s

Answers

The reaction [tex]2H_{2} O_{2}[/tex] → [tex]2H_{2} O + O_2[/tex] is thermodynamically favorable, meaning it occurs spontaneously in the forward direction under standard conditions.

The signs of ΔG (change in Gibbs free energy) and ΔS (change in entropy) can provide further insights into the thermodynamics of the reaction. In the given reaction, the formation of water and oxygen from hydrogen peroxide is accompanied by a decrease in the system's free energy. Thus, the ΔG value for this reaction is negative, indicating that it is exergonic and releases energy. This negative ΔG indicates that the reaction is thermodynamically favorable and tends to proceed in the forward direction. As for the ΔS value, the reaction involves the formation of two moles of water and one mole of oxygen from two moles of hydrogen peroxide. Since the products have a greater number of moles than the reactants, the ΔS value for this reaction is positive. This positive ΔS indicates an increase in entropy, reflecting a greater degree of randomness or disorder in the system.

Learn more about Entropy here:

https://brainly.com/question/32070225

#SPJ11

The heat of fusion Δ, of benzene (C6H6) is 10.6 kJ/mol. Calculate the change in entropy AS when 2.3 g of benzene freezes at 56 °C Be sure your answer contains a unit symbol. Round your answer to 2 significant digits.

Answers

The change in entropy when 2.3 g of benzene freezes at 56 °C is 0.9 J/K.

To calculate the change in entropy (ΔS) when 2.3 g of benzene freezes, we need to use the equation:

ΔS = ΔH / T

where ΔH is the heat of fusion, and T is the freezing temperature.

First, we need to convert the mass of benzene from grams to moles. The molar mass of benzene is:

C6H6: 6(12.01 g/mol) + 6(1.01 g/mol) = 78.11 g/mol

2.3 g / 78.11 g/mol = 0.0295 mol

Next, we need to calculate the heat absorbed by 0.0295 mol of benzene during freezing:

ΔH = nΔHf = (0.0295 mol)(10.6 kJ/mol) = 0.3127 kJ

Finally, we can calculate the change in entropy:

ΔS = ΔH / T = 0.3127 kJ / (56 + 273) K = 0.0009 kJ/K

We can convert the units of kJ/K to J/K:

0.0009 kJ/K x 1000 J/kJ = 0.9 J/K

Click the below link, to learn more about Heat of fusion:

https://brainly.com/question/30403515

#SPJ11

how much heat kj is requried to warm 10.0 grams of ice , initiall at -10.0c to steam at 110.0 c

Answers

The amount of heat required to warm 10.0 grams of ice from -10.0°C to steam at 110.0°C is 29,513 J or 29.5 kJ.

To solve this problem, we need to break it down into several steps, since the heat required to warm the substance depends on its phase and temperature.

Heating the ice from -10.0°C to 0°C

The first step is to heat the ice from its initial temperature of -10.0°C to its melting point at 0°C. To do this, we need to calculate the heat required using the formula;

Q = m × C × ΔT

where Q is heat required, m is mass of the substance, C is specific heat capacity of the substance, and ΔT is the change in temperature.

The specific heat capacity of ice will be 2.09 J/g°C, so;

Q₁ = 10.0 g × 2.09 J/g°C × (0°C - (-10.0°C)) = 209 J

Melting the ice at 0°C

Next, we need to calculate the heat required to melt the ice at 0°C. The heat of fusion of ice will be 334 J/g, so;

Q₂ = 10.0 g × 334 J/g = 3340 J

Heating the water from 0°C to 100°C

Now that all the ice has melted, we need to heat the resulting water from 0°C to its boiling point at 100°C. The specific heat capacity of water is 4.18 J/g°C, so;

Q₃ = 10.0 g × 4.18 J/g°C × (100°C - 0°C) = 4180 J

Vaporizing the water at 100°C

Once the water reaches its boiling point at 100°C, we need to vaporize it into steam. The heat of vaporization of water will be 40.7 kJ/mol, or 2260 J/g. Since we know that 18.0 g of water make up one mole, we can calculate the heat required to vaporize 10.0 g of water as;

Q₄ = 10.0 g × 2260 J/g = 22,600 J

Heating the steam from 100°C to 110°C

Finally, we need to heat the steam from 100°C to its final temperature of 110°C. The specific heat capacity of steam is 1.84 J/g°C, so;

Q₅ = 10.0 g × 1.84 J/g°C × (110°C - 100°C) = 184 J

Total heat required

To find the total heat required to warm the ice from -10.0°C to steam at 110.0°C, we simply add up all the heats calculated in the previous steps;

[tex]Q_{total}[/tex] = Q₁ + Q₂ + Q₃ + Q₄ + Q₅

= 209 J + 3340 J + 4180 J + 22,600 J + 184 J

= 29,513 J

Therefore, the amount of heat is 29,513 J or 29.5 kJ.

To know more about amount of heat here

https://brainly.com/question/9588553

#SPJ4

The copper mineral chalcocite, Cu2S, can be converted to copper simply by heating in air: Cu,S(s) + O2(g) →2Cu(s) + SO2(g) 1st attempt Part 1 (1 point) How much Cu2S is needed to make 235.0 g Cu? ____g Cu S used Part 2 (1 point) How much SO 2 is produced? ____g SO2 produced

Answers

The amount of Cu₂S is needed to be make the 235.0 g of the Cu 294.15 g Cu₂S.

The amount of SO₂ is 118.4 g.

The chemical equation is as :

Cu₂S(s)  +  O₂(g)   ---->  2Cu(s)   +  SO₂(g)

The mass of the Cu = 235 g

The moles of the Cu = mass /molar mass

The moles of the Cu = 235 g / 63.5 g/mol

The moles of Cu = 3.7 mol

The 2 moles of Cu produces by 1 mol of Cu₂S

The moles of Cu₂S = 3.7 / 2

The moles of Cu₂S = 1.85 mol

The mass of Cu₂S = 1.85 × 159

The mass of Cu₂S = 294.15 g

The 1 moles of SO₂ produces by 1 mole of Cu₂S

The mole of SO₂ = 1.85 mol

The mass of SO₂ = 1.85 × 64

The mass  of SO₂ = 118.4 g.

To learn more about moles here

https://brainly.com/question/31597231

#SPJ4

The mass of Cu₂S needed to make 35.0 g of Cu is 294.17 gThe mass of SO₂ produced from the reaction is 118.33 g

1. How do i determine the mass of Cu₂S needed?

The mass of Cu₂S needed can be obtained as follow:

Cu₂S(s) + O₂(g) -> 2Cu(s) + SO₂(g)

Molar mass of Cu₂S = 159.1 g/molMass of Cu₂S from the balanced equation = 1 × 159.1 = 159.1 g Molar mass of Cu = 63.55 g/molMass of Cu from the balanced equation = 2 × 63.55 = 127.1 g

From the balanced equation above,

127.1 g of Cu were obtained from 159.1 g of Cu₂S

Therefore,

235.0 g of Cu will be obtain from = (235.0 × 159.1) / 127.1 = 294.17 g of Cu₂S

Thus, the mass of Cu₂S needed is 294.17 g

2. How do i determine the mass of  SO₂ produced?

The mass of  SO₂ produced from the reaction can be obtain as illustrated below:

Cu₂S(s) + O₂(g) -> 2Cu(s) + SO₂(g)

Molar mass of Cu₂S = 159.1 g/molMass of Cu₂S from the balanced equation = 1 × 159.1 = 159.1 g Molar mass of SO₂ = 64 g/molMass of Cu from the balanced equation = 1 × 64 = 64 g

From the balanced equation above,

159.1 g of Cu₂S reacted to produce 64 g of SO₂

Therefore,

294.17 g of Cu₂S will react to produce = (294.17 × 64) / 159.1 = 118.33 g of SO₂

Thus, the mass of SO₂ produced is 118.33 g

Learn more about mass needed:

https://brainly.com/question/29263739

#SPJ4

how does the difference in acids in these two reactions affect the stoichiometry of the reaction? does it increase or decrease the amount of hydrogen produced?

Answers

The difference in acids in the two reactions can have an impact on the stoichiometry of the reaction.

For example, if you were to compare the reaction of hydrochloric acid (HCl) with zinc (Zn) to the reaction of sulfuric acid (H2SO4) with zinc, you would see a difference in the amount of hydrogen gas (H2) produced.

In the reaction of HCl with Zn, the stoichiometry is 2HCl + Zn → ZnCl2 + H2, meaning that for every two moles of HCl reacted, one mole of H2 is produced.

However, in the reaction of H2SO4 with Zn, the stoichiometry is Zn + H2SO4 → ZnSO4 + H2, meaning that for every one mole of H2SO4 reacted, one mole of H2 is produced.

Therefore, the difference in acids affects the stoichiometry of the reaction and can impact the amount of hydrogen gas produced. In this case, using HCl would require more acid to produce the same amount of hydrogen gas as using H2SO4.

To learn more about reaction, refer below:

https://brainly.com/question/28984750

#SPJ11

what can be added to silver bromide to promote dissolution?

Answers

To promote dissolution of silver bromide, one can add potassium cyanide (KCN).

When silver bromide is exposed to light, it undergoes a chemical reaction and produces silver ions and bromide ions. These ions can recombine to form silver bromide again, which makes it difficult to dissolve the compound.

However, by adding potassium cyanide, the cyanide ions react with the silver ions to form a complex ion, Ag(CN)₂⁻, which is soluble in water. This prevents the recombination of the silver and bromide ions, allowing the silver bromide to dissolve more easily.

It is worth noting that potassium cyanide is a highly toxic substance and should be handled with extreme care. Additionally, the use of cyanide in any form should be strictly regulated and controlled due to its potential harm to humans and the environment.

To know more about potassium cyanide, refer here:

https://brainly.com/question/31777439#

#SPJ11

what volume of 0.200 m k2c2o4 is required to react completely with 30.0 ml of 0.100 m fe(no3)3? 2fe(no3)3 3k2c2o4fe2(c2o4)3 6kno3

Answers

11.25 mL of 0.200 M K₂C₂O₄ is required to react completely with 30.0 mL of 0.100 M Fe(NO₃)₃ (iron(III) nitrate).

The balanced chemical equation for the reaction is:

2Fe(NO₃)₃ + 3K₂C₂O₄ → Fe₂(C₂O₄)₃ + 6KNO₃

From the balanced equation, we can see that 3 moles of K₂C₂O₄ are required to react with 2 moles of Fe(NO₃)₃.

First, we can calculate the number of moles of Fe(NO₃)₃ in 30.0 mL of 0.100 M solution:

n(Fe(NO₃)₃) = (0.100 mol/L) x (30.0 mL/1000 mL) = 0.003 mol

According to the stoichiometry of the reaction, 1.5 times more moles of K₂C₂O₄ are required to react with Fe(NO₃)₃.

n(K₂C₂O₄) = (1.5 mol) x (0.003 mol/2 mol) = 0.00225 mol

Finally, we can calculate the volume of 0.200 M K₂C₂O₄ required to obtain 0.00225 mol:

V = n / c = 0.00225 mol / 0.200 mol/L = 0.01125 L = 11.25 mL

Therefore, 11.25 mL of 0.200 M K₂C₂O₄ is required to react completely with 30.0 mL of 0.100 M Fe(NO₃)₃.

To learn more about iron(III) nitrate refer here:

https://brainly.com/question/30764007#

#SPJ11

The addition of hydroiodic acid to a silver nitrate solution precipitates silver iodide according to the reaction:
AgNO3(aq)+HI(aq)→AgI(s)+HNO3(aq)
When 50.0 mL of 5.00×10−2 M AgNO3 is combined with 50.0 mL of 5.00×10−2 M HI in a coffee-cup calorimeter, the temperature changes from 22.40 ∘C to 22.91∘C.
Part A
Calculate ΔHrxn for the reaction as written. Use 1.00 g/mL as the density of the solution and Cs=4.18J/(g⋅∘C) as the specific heat capacity of the solution.
Express the energy to two significant figures and include the appropriate units.

Answers

Expressed to two significant figures, the value of ΔHrxn is -8.6×10⁴ J/mol. The appropriate units are Joules per mole of AgNO₃ reacted.

The ΔHrxn for the reaction can be calculated using the equation:

ΔHrxn = -(qrxn)/(n)

where qrxn is the heat absorbed or released by the reaction and n is the number of moles of limiting reagent.

First, we need to calculate the amount of heat absorbed or released by the reaction, qrxn. This can be done using the equation:

qrxn = C × ΔT × m

where C is the specific heat capacity of the solution, ΔT is the change in temperature, and m is the mass of the solution.

We are given that the initial and final temperatures of the solution are 22.40 ⁰C and 22.91⁰C, respectively. Therefore, ΔT = 0.51⁰C. The mass of the solution can be calculated using its density and volume:

mass = density × volume = 1.00 g/mL × 100.0 mL = 100.0 g

Substituting the given values into the equation for qrxn, we get:

qrxn = 4.18 J/(g⋅⁰C) × 0.51⁰C × 100.0 g = 214.2 J

Next, we need to determine the number of moles of limiting reagent, which is the reactant that is completely consumed in the reaction. In this case, both reactants have the same molar concentration, so we can assume that they are both limiting.

Therefore, the number of moles of limiting reagent is:

n = (50.0 mL × 5.00×10⁻² mol/mL) / 1000 mL/L = 2.50×10⁻³ mol

Finally, we can substitute the values for qrxn and n into the equation for ΔHrxn to obtain:

ΔHrxn = -(214.2 J) / (2.50×10⁻³ mol) = -8.57×10⁴ J/mol

To know more about specific heat capacity, refer here:

https://brainly.com/question/28941910#

#SPJ11

Does either or both cis- or trans-[Mn(en)2Br2] have optical isomers? O cis only O trans only O both cis and trans O neither cis nor trans O [Mn(en) Bry] does not exhibit cis-trans isomerism.

Answers

Yes, both cis- and trans-[Mn(en)2Br2] have optical isomers.

Optical isomers are stereoisomers that are non-superimposable mirror images of each other and have different optical activity. Cis- and trans- isomers have different arrangements of ligands around the central metal atom, resulting in different spatial orientations and therefore the potential for optical isomers. The number of optical isomers that a molecule can have depends on the number of chiral centers it possesses. In this case, each [Mn(en)2Br2] complex has two chiral centers (en represents ethylenediamine), which means that each isomer can have a maximum of four optical isomers. Therefore, both cis- and trans-[Mn(en)2Br2] have the potential to exhibit optical isomers.

Know more about Optical Isomer here:

https://brainly.com/question/28295730

#SPJ11

Write the net ionic equations that occur in the following cells:
1. Pb/Pb2+ // Ag+/Ag
2. Zn/Zn2+ // Pb2+/Pb
3. Al/Al3+ // Cd2+/Cd

Answers

The net ionic equation is; Pb(s) + 2Ag⁺(aq) → Pb²⁺(aq) + 2Ag(s),  Zn(s) + Pb²⁺(aq) → Zn²⁺(aq) + Pb(s), and 2Al(s) + 3Cd²⁺(aq) → 2Al³⁺(aq) + 3Cd(s)

A net ionic equation is a chemical equation that only includes the species that are involved in the reaction and excludes the spectator ions. Spectator ions are ions that do not participate in the reaction and do not undergo any chemical changes.

Anode; Pb(s) → Pb²⁺(aq) + 2e⁻

Cathode; 2Ag⁺(aq) + 2e⁻ → 2Ag(s)

Overall; Pb(s) + 2Ag⁺(aq) → Pb²⁺(aq) + 2Ag(s)

Net ionic equation; Pb(s) + 2Ag⁺(aq) → Pb²⁺(aq) + 2Ag(s)

Anode; Zn(s) → Zn²⁺(aq) + 2e⁻

Cathode; Pb²⁺(aq) + 2e⁻ → Pb(s)

Overall; Zn(s) + Pb²⁺(aq) → Zn²⁺(aq) + Pb(s)

Net ionic equation; Zn(s) + Pb²⁺(aq) → Zn²⁺(aq) + Pb(s)

Anode; Al(s) → Al³⁺(aq) + 3e⁻

Cathode; Cd²⁺(aq) + 2e⁻ → Cd(s)

Overall; 2Al(s) + 3Cd²⁺(aq) →2Al³⁺(aq) + 3Cd(s)

Net ionic equation; 2Al(s) + 3Cd²⁺(aq) → 2Al³⁺(aq) + 3Cd(s)

To know more about net ionic equation here

https://brainly.com/question/22885959

#SPJ4

For 6 points, determine the Ksp of Cd(OH)2. Its solubility is 1.2 x 10-6. a. 2.4 x 10-6 b. 1.4 x 10-12 c. 6.9 x 10-18 d. 1.7 x 10-18 e. None of the above

Answers

The Ksp of Cd(OH)₂ is option b- 1.44 x 10⁻¹² when the solubility is 1.2 x 10⁻⁶.

The solubility product constant (Ksp) is a measure of the solubility of a compound in water. It represents the equilibrium constant for the dissolution of an ionic compound into its constituent ions. For the compound Cd(OH)₂, it dissociates into Cd²⁺ and 2OH⁻ ions.

The solubility of Cd(OH)₂ is given as 1.2 x 10⁻⁶, which represents the concentration of Cd²⁺ ions in solution. Since Cd(OH)₂ dissociates into Cd²⁺ and 2OH⁻ ions, the concentration of OH⁻ ions can be calculated as twice the concentration of Cd²⁺ ions.

Using the concentrations of Cd²⁺ and OH⁻ ions, we can set up the expression for the Ksp as follows:

Ksp = [Cd²⁺][OH⁻]²

Substituting the given solubility of Cd(OH)₂ (1.2 x 10⁻⁶) into the expression, we have:

Ksp = (1.2 x 10⁻⁶)(2(1.2 x 10⁻⁶))² = 1.44 x 10⁻¹²

Therefore, the Ksp of Cd(OH)₂ is 1.44 x 10⁻¹²,

learn more about solubility product constant here:

https://brainly.com/question/1419865

#SPJ11

Calculate the theoretical yield of isopentyl acetate for the esterification reaction.
isopentyl alcohol- quantity: 4.37 g ; molar mass (g/mol): 88.15
acetic acid- quantity: 8.5 mL ; molar mass (g/mol): 60.05
isopentyl acetate (product)- molar mass (g/mol): 130.19

Answers

The theoretical yield of isopentyl acetate for this reaction is 18.4 g. However, it is important to note that the actual yield may be less than the theoretical yield.

The balanced equation for the esterification of isopentyl alcohol and acetic acid to form isopentyl acetate and water is:

CH3COOH + CH3(CH2)3CH2OH -> CH3COO(CH2)3CH2CH(CH3)2 + H2O

To calculate the theoretical yield of isopentyl acetate, we need to determine the limiting reactant. We can use the mole ratio of the reactants to determine which one will be consumed first.

First, we need to convert the quantities of the reactants to moles:

Isopentyl alcohol: 4.37 g / 88.15 g/mol = 0.0496 mol

Acetic acid: 8.5 mL * 1.049 g/mL / 60.05 g/mol = 0.141 mol

The mole ratio of isopentyl alcohol to acetic acid is 1:1, so acetic acid is the limiting reactant.The theoretical yield of isopentyl acetate can be calculated using the mole ratio between acetic acid and isopentyl acetate:

0.141 mol acetic acid * (1 mol isopentyl acetate / 1 mol acetic acid) * 130.19 g/mol = 18.4 g

For more such questions on isopentyl acetate visit:

https://brainly.com/question/13466301

#SPJ11

How many grams of potassium iodide, , are present in 275 mL of a 0. 23 M solution?

Answers

The amount of potassium iodide present in 275 mL of a 0.23 M solution is 13.32 grams.

To find the amount of potassium iodide present in the solution, we need to use the formula:

Molarity = moles of solute/ volume of solution in liters

We are given the volume of the solution as 275 mL, which is the same as 0.275 L. We are also given the molarity as 0.23 M.

Rearranging the formula, we get:

moles of solute = Molarity x volume of solution in liters

moles of solute = 0.23 M x 0.275 L

moles of solute = 0.06325 mol

Finally, we can convert moles to grams using the molar mass of potassium iodide, which is 166.0028 g/mol.

grams of potassium iodide = moles of solute x molar mass

grams of potassium iodide = 0.06325 mol x 166.0028 g/mol

grams of potassium iodide = 13.32 grams.

Therefore, there are 13.32 grams of potassium iodide present in 275 mL of a 0.23 M solution.

Learn more about solute here.

https://brainly.com/questions/7932885

#SPJ11

Suppose that the wavenumber of the J = 1 ← 0 rotational transition of 1H81Br considered as a rigid rotor was measured to be 14.17 cm-1, what is
(a) the moment of inertia of the molecule? ans=_____ kg-m2
(b) the bond length? ans= ______ Angstroms
(Given the isotopic masses:(m(79Br) = 78.9183 amu, m(81Br) = 80.9163 amu)

Answers

In spectroscopy, the term "wavenumber" is used to express the frequency of electromagnetic radiation. It is inversely related to wavelength and is defined as the number of waves per unit of space.

The term "wavenumber" is used to characterise a wave's spatial frequency. It is frequently used to determine the frequency of electromagnetic radiation in spectroscopy. The number of waves per unit distance is known as a wavenumber, and it is commonly given in reciprocal centimetres (cm1) or inverse metres (m1).

The wavenumber is represented by the x-axis in an infrared (IR) spectrum, and the % transmission or absorption of light is shown by the y-axis. In the IR spectrum, wavenumber and photon energy are closely connected. More energetic vibrations or chemical transitions are indicated by higher wavenumbers, which are correlated with higher energy levels. Lower wavenumbers, on the other hand, signify lower energy levels and less vigorous molecular movements.

Learn more about wavenumber here:

https://brainly.com/question/31978670


#SPJ11

predict the product(s) of the following reaction: cs br2 →cs br2 → (the equation is not necessarily balanced)

Answers

The given reaction is Cs + Br₂ → CsBr₂. The product of this reaction is cesium bromide.

The reaction Cs + Br₂ → CsBr₂ involves the reaction between cesium (Cs) and bromine (Br₂) to form a compound.

In this reaction, cesium, which is an alkali metal, reacts with bromine, which is a halogen, to form cesium bromide (CsBr). The reaction is a combination reaction where the elements combine to form a compound.

This reaction involves the combination of the element cesium (Cs) with molecular bromine (Br₂) to form a compound.

The product of this reaction is cesium bromide (CsBr), but the equation is not balanced. The correct balanced equation would be:

2Cs + Br₂ → 2CsBr

Hence, the final products of the reaction are two moles of cesium bromide (CsBr).

Learn more about combination reactions here:

https://brainly.com/question/32027270

#SPJ 12

How many rings are present in C11H20N2? This compound consumes 2 mol of H2 on catalytic hydrogenation. Enter your answer in the provided box. ____ ring(s)

Answers

There are three rings present in C11H20N2. This can be determined by drawing out the molecule and identifying the three distinct cyclic structures.

The fact that the compound consumes 2 mol of H2 on catalytic hydrogenation is not directly related to the number of rings present and is likely just additional information. To determine how many rings are present in C11H20N2, we need to first find the degree of unsaturation. The compound consumes 2 mol of H2 on catalytic hydrogenation, which means there are 2 units of unsaturation present.

Here's a step-by-step explanation:
1. Calculate the degree of unsaturation using the formula: (2C + 2 + N - H) / 2, where C is the number of carbon atoms, N is the number of nitrogen atoms, and H is the number of hydrogen atoms. In this case, (2 × 11) + 2 + 2 - 20 = 24 / 2 = 2


2. Since the degree of unsaturation is 2, it means there are either 2 double bonds or rings or 1 triple bond or a combination of double bonds and rings present in the molecule.


3. Given that the molecule consumes 2 mol of H2 on catalytic hydrogenation, it suggests that the 2 units of unsaturation come from 2 rings or a combination of a ring and a double bond.

Learn more about hydrogen

https://brainly.com/question/28937951

#SPJ11


Which combination of carbonyl compound and amine can be used to prepare the following product by reductive amination?

Answers

Since reductive amination involves the reaction of a carbonyl compound (such as an aldehyde or a ketone) with an amine in the presence of a reducing agent (such as sodium borohydride or lithium aluminum hydride), we need to first identify the carbonyl compound and amine that would react to form the given product.

The given product likely results from the reduction of an imine functional group, which is typically formed by the condensation of a carbonyl compound and an amine.

The imine can be reduced to the corresponding amine by a reducing agent in the presence of acid.

In this case, the product has a six-membered aromatic ring and a nitrogen-containing functional group, which suggests that the starting materials may be a cyclic ketone or aldehyde and an aromatic amine.

One possible combination of starting materials that can be used to prepare the given product is cyclohexanone and aniline.

The reaction would proceed as follows:

1. Condensation: Cyclohexanone reacts with aniline to form the imine intermediate:

   H2N-C6H5 + (CH2)5CO → H2N-C6H5-CH2-C5H10O

2. Reduction: The imine intermediate is reduced to the corresponding amine using sodium borohydride in the presence of acid:

H2N-C6H5-CH2-C5H10O + NaBH4 + H+ → H2N-C6H5-CH2-C5H10NH2 + NaOH + BH3

The final product is 1-(cyclohexylamino)-2,4,5-trimethylbenzene:

H2N-C6H5-CH2-C5H10NH2 + CH3-C6H2(CH3)3 → H2N-C6H5-CH2-C5H10-N-(2,4,5-trimethylphenyl)

To know more about reducing agent refer here

brainly.com/question/2890416#

#SPJ11

What is the pH of a buffer solution containing equal volumes of 0.11 M NaCH COO and 0.090 M. CH COOH? PQ-21. K, (CH,COOH) - 1.8x10 (A) 2.42 (B) 4.83 (C) 11.58 (D) 13.91

Answers

The pH of the buffer solution is 4.83.

What is the pH of the given buffer solution?

A buffer solution is formed by the combination of a weak acid and its conjugate base, or a weak base and its conjugate acid. In this case, the buffer solution consists of the weak acid CH3COOH and its conjugate base CH3COO-.

To determine the pH of the buffer solution, we need to consider the equilibrium between the weak acid and its conjugate base. The pH of a buffer solution is determined by the pKa value of the weak acid and the ratio of the concentrations of the weak acid and its conjugate base.

Given the pKa value of CH3COOH as 4.83, which is equal to the negative logarithm of the acid dissociation constant (Ka), the pH of the buffer solution will be equal to the pKa value when the concentrations of the weak acid and its conjugate base are equal.

Therefore, the pH of the buffer solution containing equal volumes of 0.11 M NaCH3COO and 0.090 M CH3COOH is 4.83.

Learn more about buffer solutions

brainly.com/question/31367305

#SPJ11

Calculate the molarity of solution of "sodium sulfate" that contains 5. 2 grams sodiums sulfate diluted to 500mL

Answers

The molarity of the sodium sulfate solution is 0.0732 M.

To calculate the molarity of a sodium sulfate  solution that contains 5.2 grams of sodium sulfate diluted to 500 mL, we need to convert the mass of sodium sulfate to moles and divide it by the volume in liters.

First, we calculate the molar mass of sodium sulfate:

Na = 22.99 g/mol (atomic mass of sodium)

S = 32.07 g/mol (atomic mass of sulfur)

O = 16.00 g/mol (atomic mass of oxygen)

Molar mass of Na2SO4 = (2 * 22.99) + 32.07 + (4 * 16.00) = 142.04 g/mol

Next, we convert the mass of sodium sulfate to moles:

moles = mass / molar mass

moles = 5.2 g / 142.04 g/mol = 0.0366 mol

Now, we convert the volume of the solution to liters:

volume (in liters) = 500 mL / 1000 mL/L = 0.5 L

Finally, we calculate the molarity of the solution:

molarity (M) = moles / volume

molarity (M) = 0.0366 mol / 0.5 L = 0.0732 M

Therefore, the molarity of the sodium sulfate solution is 0.0732 M.

Learn more about molarity here:

https://brainly.com/question/31545539

#SPJ11

select the best answer that is true about this reaction. hcl(aq) ca(oh)2(aq) → 2 h2o(l) 2 cacl2(aq)

Answers

The reaction between HCl and Ca(OH)2 is a double displacement neutralization reaction that produces CaCl2 and H2O as products, while the Ca2+ and Cl- ions remain in solution as spectator ions.

The given chemical equation represents a double displacement reaction between hydrochloric acid (HCl) and calcium hydroxide (Ca(OH)2), which produces water (H2O) and calcium chloride (CaCl2) as the products.

The reaction can be understood in terms of the following ionic equation:

H+(aq) + Cl-(aq) + Ca2+(aq) + 2OH-(aq) → 2H2O(l) + Ca2+(aq) + 2Cl-(aq)

In this equation, the H+ and Cl- ions from HCl combine with the Ca2+ and OH- ions from Ca(OH)2 to form H2O and CaCl2. The Ca2+ and Cl- ions remain in solution, indicating that they are spectator ions that do not participate in the reaction.

This reaction is also a neutralization reaction, as an acid (HCl) reacts with a base (Ca(OH)2) to form a salt (CaCl2) and water. The balanced equation shows that two moles of HCl react with one mole of Ca(OH)2 to form two moles of CaCl2 and two moles of H2O.

It is important to note that this reaction is exothermic, meaning it releases heat. This is because the formation of H2O molecules is accompanied by a release of energy.

Overall, the reaction between HCl and Ca(OH)2 is a double displacement neutralization reaction that produces CaCl2 and H2O as products, while the Ca2+ and Cl- ions remain in solution as spectator ions.

For more such questions on neutralization visit:

https://brainly.com/question/23008798

#SPJ11

In alabratory preparation room one may find areagent bottle contain 5L of 12M NaOH describe how to prepar 250ml of 3. 5M NaOH from such solution

Answers

To prepare 250mL of 3.5M NaOH from a 5L bottle of 12M NaOH solution, dilution should be performed by measuring out a specific volume of the 12M solution and adding distilled water to reach the desired concentration.

To calculate the amount of 12M NaOH solution needed to make 250mL of 3.5M NaOH, use the formula: C1V1=C2V2, where C1 is the initial concentration, V1 is the initial volume, C2 is the final concentration, and V2 is the final volume. Plugging in the values, we get: (12M) (V1) = (3.5M) (250mL). Solving for V1, we get 72.92mL of 12M NaOH solution needed.

Transfer this volume to a clean, dry beaker and add distilled water to bring the total volume to 250mL. Mix well to ensure homogeneous distribution of NaOH in the solution.

The resulting solution will be 3.5M NaOH suitable for use in the laboratory. It is important to use gloves and goggles when handling NaOH as it can be corrosive and cause skin and eye irritation.

Additionally, always label the solution indicating its concentration and date of preparation.

Learn more about homogeneous here.

https://brainly.com/questions/31427476

#SPJ11

A 2.74 g sample of a substance suspected of being pure gold is warmed to 72.1 °C and submerged into a 15.2 g of water initially at 24.7 °C. The final temperature of the mixture is 26.3 °C. What is the heat capacity of the unknown substance? Could the substance be pure gold?

Answers

The specific heat capacity of pure gold is 0.129 J/(g°C).

The calculated specific heat capacity of the unknown substance is very close to that of pure gold, so it's possible that the substance is pure gold.

To determine the heat capacity of the unknown substance, we'll use the following terms:

mass (m), specific heat capacity (c), and temperature change (ΔT).

For water, we have m_water = 15.2 g, c_water = 4.18 J/(g°C), and ΔT_water = 26.3°C - 24.7°C = 1.6°C.

For the unknown substance, we have m_unknown = 2.74 g, ΔT_unknown = 72.1°C - 26.3°C = 45.8°C, and c_unknown needs to be determined.

Since heat gained by water equals heat lost by the unknown substance, we can set up the equation:

m_water * c_water * ΔT_water = m_unknown * c_unknown * ΔT_unknown.

Plugging in the values:

15.2 g * 4.18 J/(g°C) * 1.6°C = 2.74 g * c_unknown * 45.8°C.

Solving for c_unknown, we get c_unknown ≈ 0.128 J/(g°C).

Learn more about pure gold at

https://brainly.com/question/16965422

#SPJ11

Answer the following about the diagram below:

Label (A), (B) and (C) in the image.
Is the reaction endothermic or exothermic? Explain your answer.
How would adding a catalyst affect the reaction?

Answers

Answer:

Exothermic reaction

Explanation:

Energy diagrams can help us determine how the energy of reactants changes throughout a reaction.

Energy Diagrams

The purpose of energy diagrams is to show how the energy of reactants and products changes over time.

In the diagram, A is the activated complex. This is the intermediate compound that forms from the reactants before the products are made.

B is the activation energy. This is the amount of energy required for the reaction to occur.

C is the energy of reaction. This is the energy that a reaction absorbs or releases.

Energy of Reaction

Exothermic reactions release energy, and endothermic reactions absorb energy. This means that in exothermic reactions the reactants have higher energy than the products. On the other hand, in endothermic reactions, the reactants are lower energy than the product. In this reaction, the reactants are higher energy, so the reaction is exothermic. This means that energy is released, and the energy of reaction will be negative.

Catalyst

A catalyst is a compound that can be added to a reaction to increase the rate of reaction. Catalysts increase the rate of reaction by decreasing the activation energy. This makes the reaction more likely to occur and speeds up the reaction. Catalysts also decrease the energy of the activated complex.

under aerobic conditions, pyruvate can be decarboxylated to yield acetyl coa and co2. which carbons of glucose must be labeled with 14c to yield 14co2?

Answers

First we need to understand the process of aerobic respiration. In the first step of this process, glucose is broken down into two molecules of pyruvate through a series of reactions called glycolysis. Under aerobic conditions, pyruvate then enters the mitochondria, where it is further broken down to produce energy in the form of ATP.

Now, to answer the question, we need to know which carbons of glucose contribute to the carbon dioxide produced during aerobic respiration. During the decarboxylation of pyruvate, one carbon is released as CO2, which means that this carbon must have come from the original glucose molecule. To yield 14CO2, we need to label the carbon that is released during the decarboxylation with 14C.

This carbon is located at the third position in glucose, which is also the third carbon in pyruvate. Therefore, to yield 14CO2, we need to label the third carbon of glucose with 14C. It is important to note that this label will be present in all molecules derived from glucose, including pyruvate, acetyl CoA, and CO2. Thus, the label will be detected in the CO2 produced during aerobic respiration.

To know more about  aerobic respiration visit -

brainly.com/question/29111318

#SPJ11

what is the solubility of pbf2(s) in a 0.450 m pb(no3)2(aq) solution? (ksp for pbf2 = 3.6 x 10-8)

Answers

The solubility of PbF₂(s) in 0.450 M Pb(NO₃)₂(aq) is 4.0 x 10⁻¹⁰ M, determined using the Ksp expression and assuming a negligible contribution of F- from PbF₂.

To determine the solubility of PbF₂(s) in a 0.450 M Pb(NO₃)₂(aq) solution, we need to use the equilibrium expression for the solubility product constant (Ksp) of PbF₂:

PbF₂(s) ⇌ Pb²⁺(aq) + 2F⁻(aq)

The Ksp expression for this reaction is:

Ksp = [Pb²⁺][F⁻]²

We can assume that the initial concentration of F- is negligible compared to the concentration of Pb(NO₃)₂, since Pb(NO₃)₂ is a strong electrolyte and dissociates completely in water:

Pb(NO₃)₂(aq) → Pb₂+(aq) + 2NO₃⁻(aq)

Therefore, we can use the initial concentration of Pb²⁺ from the Pb(NO₃)₂ solution as the concentration of Pb²⁺ in the equilibrium expression. Let's call this concentration x. Then, the equilibrium expression becomes:

Ksp = x [F⁻]²

We need to solve for x, the concentration of Pb²⁺ in equilibrium with PbF₂(s) in the presence of excess F⁻. To do this, we need to know the concentration of F- in the solution. Since PbF₂ is a sparingly soluble salt, we can assume that the amount of F- that comes from the dissociation of PbF₂(s) is negligible compared to the amount of F⁻ that comes from the dissociation of Pb(NO₃)₂(aq). Therefore, the concentration of F- in the solution is equal to twice the initial concentration of Pb(NO₃)₂, or 0.900 M.

Now we can substitute the known values into the equilibrium expression and solve for x:

Ksp = x [F⁻]²

3.6 x 10⁻⁸ = x (0.900 M)²

x = 4.0 x 10⁻¹⁰ M

Therefore, the solubility of PbF₂(s) in a 0.450 M Pb(NO₃)₂(aq) solution is 4.0 x 10⁻¹⁰ M.

To know more about the solubility refer here :

https://brainly.com/question/31493083#

#SPJ11

Which one of the following nonpolar molecules has the highest boiling point?
C2H4
CS2
F2
N2
O2

Answers

Among the given nonpolar molecules, CS2 (carbon disulfide) has the highest boiling point.

Boiling points of nonpolar molecules primarily depend on the strength of intermolecular forces, specifically London dispersion forces.

London dispersion forces occur due to temporary fluctuations in electron distribution, resulting in temporary dipoles that induce dipoles in neighboring molecules.

The strength of London dispersion forces is influenced by molecular size and shape.

Comparing the given nonpolar molecules:

C2H4 (ethylene) has a linear shape with relatively small molecular size.

CS2 (carbon disulfide) has a linear shape with a larger molecular size and more electrons compared to C2H4.

F2 (fluorine) is a diatomic molecule with the smallest molecular size.

N2O2 (dinitrogen dioxide) has a bent shape with a larger molecular size than F2.

Among these molecules, CS2 has the highest boiling point. The larger size and greater number of electrons in CS2 lead to stronger London dispersion forces compared to the other molecules.

This increased electron density allows for stronger temporary dipoles, resulting in more significant intermolecular attractions and a higher boiling point for CS2.

Learn more about Boiling point here:

https://brainly.com/question/24168079

#SPJ11

Other Questions
Write this in a paragraph with a minimum of 5 sentences please. I will give you brainliest "The Secret Garden Revealed: A Journey of Growth" transports readers back to the enchanting world of Misselthwaite Manor, where beloved characters continue their extraordinary lives. One character who embarks on a remarkable journey of self-discovery is Dickon, the nature-loving and compassionate boy who possesses a unique connection with animals and the natural world.After the events of The Secret Garden, Dickon's love for nature blossoms even further. He becomes a renowned botanist, dedicating his life to the study and preservation of rare and endangered plant species. Traveling to distant lands and remote corners of the world, Dickon unearths hidden botanical treasures and learns about the intricate ecosystems that sustain them.During one of his expeditions to the lush rainforests of Borneo, Dickon stumbles upon a long-forgotten legend about a mythical flower said to possess incredible healing properties. Intrigued by the tale, he sets out on a quest to find this elusive flower, hoping to unlock its secrets and harness its potential for the betterment of humankind.Dickon's journey takes him through dense jungles, across treacherous terrain, and into the company of indigenous communities with profound knowledge of the land. Along the way, he encounters unexpected allies, faces formidable challenges, and learns invaluable lessons about the delicate balance between human progress and the preservation of nature."The Secret Garden Revealed: A Journey of Growth" invites readers to join Dickon as he traverses uncharted territories, delving into the depths of his own soul while unraveling the mysteries of the natural world. Through his discoveries, Dickon learns that the greatest growth comes not just from nurturing the earth but also from nurturing the bonds of friendship and love that were forged within the secret garden. In this sequel, readers witness Dickon's transformation from a nature-loving boy to a wise steward of the earth, as he uncovers the power of botanical wonders and the enduring magic of the secret garden. the fact that marsupials are not as diverse in south america as they are in australia would be classified as what type of evidence for evolution? select a light w shape for a column subjected to an axial compressive load of 1623kn. the unbraced length of column is 5m and the ends are pinned. use a36 grade steel. using a broad-spectrum chemical pesticide would be counterproductive if relying on what are you revenues total expenses profits if you sell 10000 striders PLEASE HELP IM STUCK Youve observed the following returns on SkyNet Data Corporations stock over the past five years: 21 percent, 17 percent, 26 percent, 27 percent, and 4 percent.a. What was the arithmetic average return on the companys stock over this five-year period?b. What was the variance of the companys returns over this period? The standard deviation?c. What was the average nominal risk premium on the companys stock if the average T-bill rate over the period was 5.1 percent? if a student is not making progress toward his/her iep goals, what should a general education teacher do? How do you balance this redox reaction using the oxidation number method? Fe2+(aq) + MnO4(aq) --> Fe3+(aq) + Mn2+(aq) an irb application asks that full disclosure to study participants not be required. thus, what element of the application would we then expect to see? Part B Evaluate Vterm for Ebat = 3.0V, r=0.10 12,1 = 7 cm , and B = 0.40 T. Express your answer to two significant figures and include the appropriate units. ? Value Units Vterm = Submit Request Answer < Homework 10A Problem 30.58 Part A You've decided to make a magnetic projectile launcher shown in the figure for your science project. An aluminum bar of length 1 slides along metal rails through a magnetic field B. The switch closes at t = 0s, while the bar is at rest, and a battery of emf Ebat starts a current flowing around the loop. The battery has internal resistance r. The resistance of the rails and the bar are effectively zero. (Figure 1) The bar reaches terminal speed Uterm. Find an expression for Uterm Express your answer in terms of Ebat (not the Greek letter epsilon Ebat), B, and I. ? IVO AO E Vterm = B1 Figure 1 of 1 Submit Previous Answers Request Answer X Incorrect; Try Again: 5 attempts remaining Part B X X with B Evaluate Utern for Ebat = 3.0V, r=0.102, 1 = 7 cm , and B=0.40 T. Express your answer to two significant figures and include the appropriate units. x x ? 5. How many kilojoules of heat are absorbed when 0. 46 g of chloroethane (C,HCI)is vaporized at its normal boiling point? The AH vap of chloroethane is 24. 7 kJ/mol. If D = 24, n = 8, and s2D = 6, what is the obtained t value when H0: D = 0 and H1: D 0?a.1.5b.3.46c.1.73d.cannot be calculated from the information given Which of the sequences below ranks the cognitive skills in Blooms Taxonomy from simple to complex? A) Know B) Analyze C) Synthesize D) Evaluate violent crime in the united states has been slowly decreasing over the country's history. true or false? Point m represents the opposite of -1/2 and point n represents the opposite of 5/2 which number line correctly shows m and n the bush doctrine emphasized what concept that guided foreign policy during his term? 1kg bag of mortar contains 250g cement, 650g sand and 100g lime. What percentage of the bag is cement ? The net ionic equation for the following cell is: Pb | Pb(NO3)2 || NiCl2 | Ni Pb(s) + Ni 2+(aq) Pb2+ (aq) + Ni(s) Pb2+ (aq) + Ni(s) Pb(s) + Ni 2+ (aq) Pb(s) + Ni(s) Pb2+ (aq) + Ni 2+ (aq) Pb2+ (aq) + Ni 2+ (aq) Pb(s) + Ni(s) evaluate the following indefinite integral. do not include +C in your answer. (4x^6+2x^53x^3+3)dx