A fan spins at 6.0 rev/s. You turn it off, and it slows at 1.0 rev/s2. What is the angular displacement before it stops

Answers

Answer 1

Answer:

Angular displacement before it stops = 18 rev

Explanation:

Given:

Speed of fan w(i) = 6 rev/s

Speed of fan (Slow) ∝ = 1 rev/s

Final speed of fan w(f) = 0 rev/s

Find:

Angular displacement before it stops

Computation:

w(f)² = w(i) + 2∝θ

0² = 6² + 2(1)θ

0 = 36 + 2θ

2θ = -36

Angular displacement before it stops = -36 / 2

θ = -18

Angular displacement before it stops = 18 rev


Related Questions

Please assist with solving this problem and showing the steps

Answers

Answer:

2.21 N

Explanation:

The force in this case is the total mass multiplied by the acceleration due to gravity. You are not asked for the solution to be in terms of the torque which is the usual way to solve these problems. That's why you are not given where the fulcrum is.

The fulcrum feels F1 + F2 + 34 * 980

F2 = 141.7 * 980 = 138866

F1 = 50.3 * 980  =  49294

Ruler = 34 * 980=  33320

Total Force = 221480 The units here are dynes

I just saw in the middle of the question that g = 9.80

So the answer becomes 221480 / 1000 = 221.48   because we needed kg

And that answer becomes 221.48/100 2.21 because the force of gravity should be 9.8 not 980

The total force exerted on the fulcrum is

Una cuerda horizontal tiene una longitud de 5 m y masa de 0,00145 kg. Si sobre esta cuerda se da un pulso generando una longitud de onda de 0,6 m y una frecuencia de 120 Hz. La tensión a la cual está sometida la cuerda es:

a. 1,5 N

b. 15,0 N

c. 3,1 N

d. 5,2 N

Answers

Answer:

Option (A) is correct.

Explanation:

A horizontal rope has a length of 5 m and a mass of 0.00145 kg. If a pulse occurs on this string, generating a wavelength of 0.6 m and a frequency of 120 Hz. The tension to which the string is subjected is

mass of string, m = 0.00145 kg

Frequency, f = 120 Hz

wavelength = 0.6 m

Speed = frequency x wavelength

speed = 120 x 0.6 = 72 m/s

Let the tension is T.

Use the formula

[tex]v =\sqrt\frac{T L}{m}\\\\72 = \sqrt\frac{T\times 5}{0.00145}\\\\T = 1.5 N[/tex]

Option (A) is correct.

Traveling waves propagate with a fixed speed usually denoted as v (but sometimes c). The waves are called __________ if their waveform repeats every time interval T.

a. transverse
b. longitudinal
c. periodic
d. sinusoidal

Answers

Answer:

periodic

Explanation:

Question 7 of 10
A railroad freight car with a mass of 32,000 kg is moving at 2.0 m/s when it
runs into an at-rest freight car with a mass of 28,000 kg. The cars lock
together. What is their final velocity?
A.1.1 m/s
B. 2.2 m/s
C. 60,000 kg•m/s
D. 0.5 m/s

Answers

Answer:

a

Explanation:

you take 32,000kg ÷2.0m

two point charges with charge q are initially separated by a distance d. if you double the charge on both charges, how far should the charges be separated for the potential energy between them to remain the same

Answers

Answer:

  r ’= 4 r

Explanation:

Electric potential energy is

          U = [tex]k \frac{q_1q_2}{r_{12}}[/tex]k q1q2 / r12

in this exercise

          q₁ = q₂ = q

          U = k q² / r

for when the charge change

           U ’= k q’² / r’

indicate that

      q ’= 2q

      U ’= U

we substitute

           U = k (2q) ² / r ’

           U = 4 k q² / r ’

we substitute

           [tex]k \ \frac{q^2}{r} = 4 k \ \frac{q^2}{r'}[/tex]k q² / r = 4 k q² / r ’

           r ’= 4 r

Suppose a power plant uses a Carnot engine to generate electricity, using the atmosphere at 300 K as the low-temperature reservoir. Suppose the power plant produces an amount of electric energy with the hot reservoir at 500 K during Day One and then produces the same amount of electric energy with the hot reservoir at 600 K during Day Two. The thermal pollution was:

Answers

Answer: hello your question lacks some vital information below is the complete question

Suppose a power plant uses a Carnot engine to generate electricity, using the atmosphere at 300 K as the low-temperature reservoir. Suppose the power plant produces 1 × 106 J of electricity with the hot reservoir at 500 K during Day One and then produces 1 × 106 J of electricity with the hot reservoir at 600 K during Day Two. The thermal pollution was

answer:

Total thermal pollution = 2.5 * 10^6 J

Explanation:

Low temperature reservoir = 300 K

hot reservoir temperature = 500 K

Electrical energy produced by plant ( W ) = 1 * 10^6 J

lets assume ; Q1 = energy absorbed , Q2 = energy emitted

W = Q1 - Q2  or  Q2 = Q1 - W  ( we will apply this as the formula for determining thermal pollution )

For day 1

T1 = 500k , T2 = 300k

applying Carnot engine formula

W / Q1 = 1 - T2/T1

∴ Q1 = 10^6 / ( 1 - (300/500)) = 2.5 * 10^6 J

thermal pollution ; Q2 = Q1 - W = ( 2.5 * 10^6 - 1 * 10^6 ) = 1.5 * 10^6 J

for Day 2

T1 = 600k,  T2 = 300k

Q1 = 10^6 / ( 1 - (300/600)) = 2 * 10^6 J

Thermal pollution; Q2 = Q1 - W  = 1 * 10^6 J

Therefore the Total thermal pollution =  1 * 10^6  + 1.5 * 10^6  = 2.5 * 10^6 J

A 1.0 ball moving at 2.0 / perpendicular to a wall rebounds from the wall at 1.5 /. If the ball was in contact with the wall for 0.1 , what force did the wall impart onto the ball?

Answers

Answer:

5N

Explanation:

We have a simple problem of momentum here.

ΔMomentum= mΔv= FΔt

Solve for F

mΔv/Δt=F

Plug in givens

1*(2-1.5)/0.1=F

F=5N

The amount of force that the wall imparts on the ball is 5.0N

According to Newton's second law, the formula for calculating the force applied is expressed as:

[tex]F=ma[/tex]

m is the mass of the object

a is the acceleration of the object

Since acceleration is the change in velocity of an object, hence [tex]a=\frac{\triangle v}{t}[/tex]

The applied force formula becomes [tex]F=\frac{m\triangle v}{t}[/tex]

Given the following parameters

m = 1.0kg

[tex]\triangle v=2.0-1.5\\\triangle v=0.5m/s[/tex]

t = 0.1sec

Substitute the given parameter into the formula

[tex]F=\frac{1.0\times 0.5}{0.1}\\F=\frac{0.5}{0.1}\\F=5N[/tex]

Hence the amount of force that the wall imparts on the ball is 5.0N

Learn more here: https://brainly.com/question/17811936

convert 2.4 milimetre into metre​

Answers

Answer is 0.0024

Explanation

divide the length value by 1000.

Hi, so i have to find T1, can some1 help?

Answers

30.1 N

Explanation:

Given:

[tex]W_1 = 16\:\text{N}[/tex]

[tex]W_2 = 8\:\text{N}[/tex]

Let's write the components of the net forces at the intersections. Note that the system is equilibrium so all the net forces are zero.

Forces involving W1:

[tex]x:\:\:\:-T_1 + T_3\cos \alpha = 0\:\: \\ \text{or}\:\:T_2 = T_3\cos \alpha\:\:\:\:\:(1)[/tex]

[tex]y:\:\:\:T_3\sin \alpha - W_1 = 0\:\:\: \\ \text{or}\:\:\:T_3\sin \alpha = W_1\:\:\:\:\:\:(2)[/tex]

Forces involving W2:

[tex]x:\:\:\:T_1\sin 53 - T_3\sin \alpha = W_2\:\:\:\:\:\:\:(3)[/tex]

[tex]y:\:\:\:T_4 - T_1\cos 53 - T_3\cos \alpha = 0\:\:\:\;(4)[/tex]

Substitute (2) into (3) and we get

[tex]T_1\sin 53 - W_1 = W_2[/tex]

Solving for [tex]T_1[/tex],

[tex]T_1 = \dfrac{W_1 + W_2}{\sin 53} = 30.1\:\text{N}[/tex]

A wheel accelerates so that it's angular speed increases uniformly from 150 rads/s to 580 rads/s in 16 revolutions.Cakcjlate its angular acceleration. ​

Answers

Answer:

A = 26.875 rad/s²

Explanation:

Given the following data;

Initial angular speed, Uw = 150 rads/s.

Final angular speed, Vw = 580 rads/s.

Time = 16 seconds.

To calculate the angular acceleration;

From kinematics equation;

At = Vw - Uw

Where;

A is the angular acceleration.t is the timeVw is the final angular speed.Uw is the initial angular speed.

Substituting into the formula, we have;

A*16 = 580 - 150

16A = 430

A = 430/16

A = 26.875 rad/s²

In an exciting game, a baseball player manages to safely slide into second base. The mass of the baseball player is 88.9 kg and the coefficient of kinetic friction between the ground and the player is 0.53. (a) Find the magnitude of the frictional force in newtons. N (b) It takes the player 1.7 s to come to rest. What was his initial velocity (in m/s)

Answers

Answer:

Look at explanation

Explanation:

a) Kinetic Friction= μmg

μmg=0.53*88.9*9.8=461.75N

b)  -461.75N=ma

a= -5.19m/s^2

v=v0+at

5.19*1.7=v0

v0=8.81m/s^2

(a) The magnitude of the frictional force will be 461.75N

(b)The initial velocity will be 8.81 m/s.

What is kinetic friction?

A force that acts among sliding parts is referred to as kinetic friction. A body moving on the surface is subjected to a force that opposes its progressive motion

The size of the force will be determined by the kinetic friction coefficient between the two materials.

The given data in the problem is;

μ is the coefficient of kinetic friction= 0.53.

m is the mass = 88.9 kg

g is the acceleration due to gravity= 9.81 m/s²

v is the speed =?

The formula for friction force is;

[tex]\rm F= \mu R \\\\ R=mg \\\\ F= \mu mg \\\\\ F=0.53 \times 88.9 \times 9.81 \\\\ F= 461.75 \ N[/tex]

Mechanical force is found as;

F=ma

-461.75=(88.9)a

(-ve shows the -ve work done)

a=-5.19 m/s

From the Newton's first equation of motion;

v=u+at

0=u+at

u=-at

u=(- (-5.19)(1.7)

u=8.81 m/s²

To learn more about the kinetic friction refer to;

https://brainly.com/question/13754413

#SPJ2

The bulk modulus of water is B = 2.2 x 109 N/m2. What change in pressure ΔP (in atmospheres) is required to keep water from expanding when it is heated from 10.9 °C to 40.0 °C?

Answers

Answer:

A change of 160.819 atmospheres is required to keep water from expanding when it is heated from 10.9 °C to 40.0 °C.

Explanation:

The bulk modulus of water ([tex]B[/tex]), in newtons per square meters, can be estimated by means of the following model:

[tex]B = \rho_{o}\cdot \frac{\Delta P}{\rho_{f} - \rho_{o}}[/tex] (1)

Where:

[tex]\rho_{o}[/tex] - Water density at 10.9 °C, in kilograms per cubic meter.

[tex]\rho_{f}[/tex] - Water density at 40 °C, in kilograms per cubic meter.

[tex]\Delta P[/tex] - Pressure change, in pascals.

If we know that [tex]\rho_{o} = 999.623\,\frac{kg}{m^{3}}[/tex], [tex]\rho_{f} = 992.219\,\frac{kg}{m^{3}}[/tex] and [tex]B = 2.2\times 10^{9}\,\frac{N}{m^{2}}[/tex], then the bulk modulus of water is:

[tex]\Delta P = B\cdot \left(\frac{\rho_{f}}{\rho_{o}}-1 \right)[/tex]

[tex]\Delta P = \left(2.2\times 10^{9}\,\frac{N}{m^{3}} \right)\cdot \left(\frac{992.219\,\frac{kg}{m^{3}} }{999.623\,\frac{kg}{m^{3}} }-1 \right)[/tex]

[tex]\Delta P = -16294943.19\,Pa \,(-160.819\,atm)[/tex]

A change of 160.819 atmospheres is required to keep water from expanding when it is heated from 10.9 °C to 40.0 °C.

If a bale of hay behind the target exerts a constant friction force, how much farther will your arrow burry itself into the hay than the arrow from the younger shooter

Answers

Answer:

The arrow will bury itself farther by 3S₁

Explanation:

lets assume; the Arrow shot by me has a speed twice the speed of the arrow fired by the younger shooter

Given that ; acceleration is constant , Frictional force is constant

                    A₂ =   A₁

Vf²₂ - Vi²₂ / 2s₂  = Vf₁² - Vi₁² / 2s₁ ---- ( 1 )

final velocities = 0

Initial velocities : Vi₂ = 2(Vi₁ )

Back to equation 1

0 - (2Vi₁ )² / 2s₂ =  0 - Vi₁² / 2s₁

hence :

s₂ = 4s₁

hence the Arrow shot by me will burry itself farther by :

s₂ - s₁ = 3s₁

Note :  S1 = distance travelled by the arrow shot by the younger shooter

You have three identical metallic spheres, A, B and C, fixed to isolating pedestals. They all start off uncharged. You then charge sphere A to +32.0 uC. You use rubber gloves to move sphere A so that it briefly touches sphere B, and then is separated. Next, sphere A briefly touches sphere C, and again is separated. Finally, sphere A touches sphere B a second time, and is again separated. What will be the final charge of sphere B?

Answers

Answer:

Charge on B is 12 uC.

Explanation:

Initial charge on A = 32 uC

Initial charge on B and C = 0

Now A touches to B, so the charge on A and B both is

q = (32 + 0) / 2 = 16 uC

Now A touches to C, so the charge on A and C both is

q' = (16 + 0) / 2 = 8 uC

Now again A touches to B so the charge on B is

q''= (8 + 16) / 2 = 12 uC  

An ice skater with a mass of 50 kg is gliding acrossthe ice at a speed of 8 m/s when herfriend comes up from behind and gives her a push,causing her speed to increase to 12m/s. How much work did the friend do on the skater

Answers

Answer:

[tex]W=2KJ[/tex]

Explanation:

From the question we are told that:

Mass [tex]M=50kg[/tex]

Initial Velocity [tex]v_1=8m/s[/tex]

Final Velocity [tex]v_2=12m/s[/tex]

Generally the equation for Work-done is mathematically given by

W=\triangle K.E

Therefore

 [tex]W=0.5M(v_2^2-v_1^2)[/tex]

 [tex]W=0.5*50(12^2-8^2)[/tex]

 [tex]W=2KJ[/tex]

A body starts from rest and accelerates uniformly at 5m/s. Calculate the time taken by the body to cover a distance of 1km

Answers

Answer:

20 seconds

Explanation:

We are given 2 givens in the first statement

v0=0 and a=5

And we are trying to find time needed to cover 1km or 1000m.

So we use

x-x0=v0t+1/2at²

Plug in givens

1000=0+2.5t²

solve for t

t²=400

t=20s

What's the speed of a sound wave through water at 25 Celsius?
A. 1,000 m/s
B. 1,500 m/s
C. 1,250 m/s
D. 750 m/s

Answers

Answer:

B) 1500m/s

Explanation:

Ans is 1500m/s

A 64-ka base runner begins his slide into second base when he is moving at a speed of 3.2 m/s. The coefficient of friction between his clothes and Earth is 0.70. He slides so that his speed is zero just as he reaches the base.

Required:
a. How much mechanical energy is tout due to friction acting on the runner?
b, How far does he slide?

Answers

Answer:

Explanation:

From the given information:

mass = 64 kg

speed = 3.2 m/s

coefficient of friction [tex]\mu =[/tex] 0.70

The mechanical energy touted relates to the loss of energy in the system as a result of friction and this can be computed as:

[tex]W = \Delta K.E[/tex]

[tex]\implies \dfrac{1}{2}m(v^2 -u^2)[/tex]

[tex]= \dfrac{1}{2}(64.0 \kg) (0 - (3.2 \ m/s^2))[/tex]

Thus, the mechanical energy touted = 327.68 J

According to the formula used in calculating the frictional force

[tex]F_r = \mu mg[/tex]

= 0.70 × 64  kg× 9.8 m/s²

= 439.04 N

The distance covered now can be determined as follows:

d = W/F

d = 327.68 J/  439.04 N

d = 0.746 m

The unit of kinetic energy is the _______. The unit of kinetic energy is the _______. hertz meter watt joule radian

Answers

Answer:

joule

Explanation:

The equations for calculating both the electric force and the gravitational force are above. Their equations are very similar. What is an important difference between these two forces?

A The electrical force is measured in coulombs; the gravitational force is measured in newtons.

B The electrical force between two charged objects will always be weaker than the gravitational force between them.

C The gravitational force decreases with the square of the distance between the objects; the electrical force increases with the square of the distance between the objects.

D Electrical forces can be attractions or repulsions; gravitational forces can only be attractions.

Answers

A, B, and C are hilarious. D is correct.

Charges can be positive or negative, so a pair of charges can be alike or opposite. But so far, we've never seen a negative mass.

if a body covers 100m in 5 second from rest find the acceleration produced by a body in 10 second​

Answers

Answer:

a=10m/s^2

Explanation:

acceleration= final velocity+ initial velocity/time taken

v-u/t=a

100-0/5=a

100/5=a

a=20m/s^2

case2

100-0/10=a

100/10=a

a=10m/s^2

Don't forget to write the units.

Hope this helps

please mark me as brainliest.

Why is the melting of ice a physical change?
A. It changes the chemical composition of water.
B. It does not change the chemical composition of water.
C. It creates new chemical bonds.
D. It forms new products.
E. It is an irreversible change that forms new products.

Answers

It does not change the chemical composition of water.

93 cm3 liquid has a mass of 77 g. When calculating its density what is the appropriate number of significant figures

Answers

Answer:

828 kg/m³ or 0.828 g/cm³

Explanation:

Applying,

D = m/V............. Equation 1

Where D = density of the liquid, m = mass of the liquid, V = volume of the liquid.

From the question,

Given: m = 77 g , V = 93 cm³

Substitute these values into equation 1

D = 77/93

D = 0.828 g/cm³

Converting to kg/m³

D = 828 kg/m³

The force an ideal spring exerts on an object is given by , where measures the displacement of the object from its equilibrium position. If , how much work is done by this force as the object moves from to

Answers

Answer:

The correct answer is "1.2 J".

Explanation:

Seems that the given question is incomplete. Find the attachment of the complete query.

According to the question,

x₁ = -0.20 mx₂ = 0 mk = 60 N/m

Now,

⇒ [tex]W=\int_{x_1}^{x_2}F \ dx[/tex]

⇒      [tex]=\int_{x_1}^{x_2}-kx \ dx[/tex]

⇒      [tex]=-k \int_{-0.20}^{0}x \ dx[/tex]

By putting the values, we get

⇒      [tex]=-(60)[\frac{x^2}{2} ]^0_{-0.20}[/tex]

⇒      [tex]=-60[\frac{0}{2}-\frac{0.04}{2} ][/tex]

⇒      [tex]=1.2 \ J[/tex]

At an airport, luggage is unloaded from a plane into the three cars of a luggage carrier, as the drawing shows. The acceleration of the carrier is 0.12 mls2, and friction is negligible. The coupling bars have negligible mass. By how much would the tension in each of the coupling bars A, B, and C change if 39 kg of luggage were removed from car 2 and placed in (a) car I and (b) car 3

Answers

Answer:

a) ΔT₁ = -4.68 N,   ΔT₂ = 4.68 N, b) ΔT₂ = 4.68 N, ΔT₁ = 4.68 N

Explanation:

In this exercise we will use Newton's second law.

         ∑F = m a

Let's start with the set of three cars

         F_total = M a

         F_total = M 0.12

where the total mass is the sum of the mass of each charge

          M = m₁ + m₂ + m₃

 

This is the force with which the three cars are pulled.

Now let's write this law for each vehicle

car 1

         F_total - T₁ = m₁ a

         T₁ = F_total - m₁ a

car 2

         T₁ - T₂ = m₂ a

         T₂ = T₁ - m₂ a

car 3

         T₂ = m₃ a

         

note that tensions are forces of action and reaction

a) They tell us that 39 kg is removed from car 2 and placed on car 1

         m₂’= m₂ - 39

         m₁'= m₁ + 39

         m₃ ’= m₃

they ask how much each tension varies, let's rewrite Newton's equations

         

The total force does not change since the mass of the set is the same F_total ’= F_total

car 1

           F_total ’- T₁ ’= m₁’ a

           T₁ ’= F_total - m₁’ a

           T₁ ’= (F_total - m₁ a) - 39 a

           T₁ '= T₁ - 39 0.12

           ΔT₁ = -4.68 N

car 2

           T₁’- T₂ ’= m₂’ a

           T₂ ’= T₁’- m₂’ a

           T₂ '= (T₁'- m₂ a) + 39 a

           T₂ '= T₂ + 39 0.12

           ΔT₂ = 4.68 N

b) in this case the masses remain

            m₁ '= m₁

           m₂ ’= m₂ - 39

           m₃ ’= m₃ + 39

we write Newton's equations

car 3

          T₂ '= m₃' a

          T₂ ’= (m₃ + 39) a

          T₂ '= m₃ a + 39 a

          T₂ '= T₂ + 39 0.12

          ΔT₂ = 4.68 N

car 1

            F_total - T₁ ’= m₁’ a

            T₁ ’= F_total - m₁ a

car 2

            T₁' -T₂ '= m₂' a

            T₁ ’= T₂’- m₂’ a

            T₁ '= (T₂'- m₂ a) + 39 a

            T₁ '= T₁ + 39 0.12

            ΔT₁ = 4.68 N

The tension in each of the coupling bars A, B, and C of the luggage carrier changes as,

When luggage were removed from car 2 and placed in car 1, the tension is A and C does not change and the tension in B is decreased by 4.68 N.When luggage were removed from car 2 and placed in car 3, the tension is A and B does not change and the tension in C is increased by 4.68 N.

What is tension force?

Tension is the pulling force carried by the flexible mediums like ropes, cables and string.

Tension in a body due to the weight of the hanging body is the net force acting on the body.

At an airport, luggage is unloaded from a plane into the three cars of a luggage carrier, as the drawing shows. The acceleration of the carrier is 0.12 m/s², and friction is negligible.

The acceleration is the same, Tension due to the horizontal component of the forces for car 1, 2 and 3 can be given as,

[tex]\sum F_{1h}=T_A-T_B=m_1a\\\sum F_{2h}=T_B-T_C=m_2a\\\sum F_{3h}=T_C=m_3a[/tex]

On solving the above 3 equation, we get the values of tension in each bar as,

[tex]T_A=(m_1+m_2+m_3)a\\T_B=(m_3+m_2)a\\T_C=m_3a[/tex]

Case 1- When 39 kg of luggage were removed from car 2 and placed in car I

The tension is A and C does not change for this case. The acceleration of the carrier is 0.12 m/s². Thus, the change in tension is B is,

[tex]\Delta T_B=39\times0.12\\\Delta T_B=4.68\rm \;N[/tex]

Case 2- When 39 kg of luggage were removed from car 2 and placed in car III

The tension is A and B does not change for this case. The acceleration of the carrier is 0.12 m/s². Thus, the change in tension is B is,

[tex]\Delta T_C=39\times0.12\\\Delta T_C=4.68\rm \;N[/tex]

Hence, the tension in each of the coupling bars A, B, and C of the luggage carrier changes as,

When luggage were removed from car 2 and placed in car 1, the tension is A and C does not change and the tension in B is decreased by 4.68 N.When luggage were removed from car 2 and placed in car 3, the tension is A and B does not change and the tension in C is increased by 4.68 N.

 

Learn more about the tension here;

https://brainly.com/question/25743940

Typhoon signal number 2 is raised. What is the speed of the expected typhoon?​

Answers

the simple answer is from 61kmph to 120kmph

Explanation:

no explanation is needed


A current of 5.50 A flows in a conductor for 7.5 s. How much charge passes a given point in the conductor during this time?

Answers

56.1 neither songs were

Three spheres (water, iron and ice) of the exact same volume are submerged in a tub of water. After the spheres are lined up, they are released. The spheres are made of plastic with the same density as water, ice, and iron.

Required:
a. Compare the weights of the three spheres.
b. Compare the buoyant forces on the three spheres.
c. What direction does the net force push on each of the spheres?
d. What happens to each sphere after it is released?

Answers

Answer:

(a) Iron > plastic > ice

(b) Same on all

(c) Iron downwards, plastic net force zero, ice upwards.

(d) Iron sphere sinks, plastic sphere is in equilibrium and ice sphere will floats.

Explanation:

Three spheres have same volume , plastic, ice and iron.

(a) The weight is given by

Weight = mass x gravity = volume x density x gravity

As the density of iron is maximum and the density of ice is least so the order of the weight is

Weight of iron > weight of plastic > weight of ice

(b) Buoyant force is given by

Buoyant force = Volume immersed x density of fluid x g

As they have same volume, density of fluid is same so the buoyant force is same on all the spheres.

(c) Net force is

F = weight - buoyant force  

So, the net force on the iron sphere is downwards

On plastic sphere is zero as the density of plastic sphere is same as water. On ice sphere it is upwards.

(d) Iron sphere sinks, plastic sphere is in equilibrium and ice sphere will floats.  

a. What do you mean by chromatic aberration in lenses?

Answers

Chromatic aberration is a phenomenon in which light rays passing through a lens focus at different points, depending on their wavelength. ... the same area of the photo after post-production removal of the chromatic aberration using a software tool.

What is the value of the charge that experiences a force of 2.4×10^-3N in an electric field of 6.8×10^-5N/C

Answers

Hi there!

[tex]\large\boxed{\approx 35.29 C}[/tex]

Use the following formula:

E = F / C, where:

E = electric field (N/C)

F = force (N)

C = Charge (C)

Thus:

6.8 × 10⁻⁵ = 2.4 × 10⁻³ / C

Isolate for C:

C = 2.4 × 10⁻³  / 6.8 × 10⁻⁵

Solve:

≈ 35.29 C

Other Questions
The Hardy-Weinberg principle is written as the equation p2 + 2pq + q2 = 1. What does prepresent? Color mixtures using light, for example those in digital displays, are called __________ color mixtures. If a less concentrated initial solution of sodium bicarbonate was used in beaker C, would that solution require more or less bicarbonate to neutralize the acid? Why? Two blocks, one of mass 5 kg and the other of mass 2 kg, are attached to opposite ends of a light string and hung vertically from a massless, frictionless pulley. Initially the heavier block is held in place a distance 2.5 m above the floor, the lighter block is just touching the floor, and the cord is taut. Then the heavier block is released and comes crashing to the floor while the cord slackens and the lighter block continues to rise. What is the maximum height reached by the lighter block The first of two significant fiscal policy initiatives enacted by the government during the Great Recession, signed in February 2008 by President George W. Bush, was the:__________a. American Recovery and Reinvestment Act of 2008.b. Economic Stimulus Act of 2008.c. Economic Tax Rebate Act of 2008.d. Economic Recovery and Reinvestment Act of 2008.e. American Stimulus Act of 2008. A student borrows $95,000 for business school at 4.5% stated annual interest with monthly repayment over 9 years. Consider this as a loan with no payments or interest during school so that the problem structure is equivalent to a standard loan received one period before the first payment. Suppose that to better match expected student salary growth over time, the loan is structured as a growing annuity with each monthly payment growing by 0.3% compared to the previous monthly payment. How much is the first monthly payment A quadratic equation is shown below:6x2 + 17x + 9 = 0Part A: Describe the solution(s) to the equation by just determining the radicand. Show your work. (5 points)Part B: Solve 4x2 4x + 1 = 0 by using an appropriate method. Show the steps of your work, and explain why you chose the method used. (5 points)(10 points) The RRR Company has a target current ratio of 3.2. Presently, the current ratio is 4.1 based on current assets of $12,956,000. If RRR expands its fixed assets using short-term liabilities (maturities less than one year), how much additional funding can it obtain before its target current ratio is reached CORRECT ANSWERS ONLYYJared is training to run his first marathon (26.2 miles). He usually consumes around 2,000 calories per day to meet his nutritional needs but should make some adjustments due to his training. Which of the following changes should Jared make?A. Attempt a crash diet to get his body in better shape for the marathonB. Consume more sugar during training to give him bursts of energy while runningC. Decrease his calorie intake to build more lean muscle to help him run the marathonD. Increase his calorie intake to adjust for the additional energy he needs for training What steps could Nadia and her mother take? Check all that apply.Eat a balanced, nutritious diet.Limit the variety of food choices.Set healthy personal goals.Begin a regular exercise program.Rely on media images as motivation. the basic structural and functional unit of the living organism is Which one of the following compounds does NOT obey the "octet rule"?LiFBF3H20CBr4 Factor 12y^2 + 5y -2 completely As the altitude increases within Earths atmosphere, what happens to air pressure? Which belief system did the Qin dynasty follow According to social learning theory, juveniles are most likely to imitate the behavior of a model that: 8) A pyramid has a rectangluar base with length 12 km and width of 5 km. If the volume is 200cubic kilometers, what is the height? Josephine left home traveling at 25 mph. One hour later her friend, Steve, leaves from the same place and travels the same road traveling at 50 mph. How many hours will it take Steve to catch up to Josephine? Two cars started from a point and traveled in opposite directions; eachcar has traveled some miles as shown on the number line. Find thedistance between the two cars. If Hilltop Turf Farms total cost of producing acres of sod is TC = 0.2 Q 2 + 120 Q + 5,000, the marginal cost of producing the 50th acre of sod is: