A car travels at a speed of 40 m/s for 29.0 s;
what is the distance traveled by the car?

Answers

Answer 1

Answer: 1160 m

Explanation:

Speed = distance / time. Plug in 40 m/s for speed and 29 s for time in order to get the distance, 1160 m.


Related Questions

When resting, a person generates about 412005 joules of heat from the body. The person is submerged neck-deep into a tub containing 2124 kg of water at 20.9 °C. If the heat from the person goes only into the water, find the water temperature.

Answers

If a person generates about 412005 joules of heat from the body,  the water temperature is mathematically given as

t=21.6296C

What is the water temperature.?

Question Parameter(s):

The person is submerged neck-deep into a tub containing 2124 kg of water at 20.9 °C

Generally, the equation for the Heat   is mathematically given as

Heat gained =Heat loess

Thereofore

mw*cw*(t-2160)=1.5*10^5

[tex]t=21.60+\frac{1.5*10^5}{mw*Cw}\\\\t=21.60+\frac{1.5*10^5}{1.2*10^3*4186}[/tex]

t=21.6296C

In conclusion, the tempreature

t=21.6296C

Read more about Temperature

https://brainly.com/question/13439286

how r u

________________.

Answers

I’m okay I just need help with math, how are you

There are two space ships traveling next to each other. The first one is 500
Kg and the second one is 498 Kg. Since they are 35 meters apart, what is
the force of gravity between the two space ships?

Answers

This question involves the concept of  Newton's law of gravitation.

The force of gravity between the two spaceships is "1355.78 N".

Newton's Law Of Gravitation

According to Newton's Law of Gravitation:

[tex]F=\frac{Gm_1m_2}{r^2}[/tex]

where,

F = force of gravity between ships = ?G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²m₁ = mass of first ship = 500 kgm₂ = mass of second ship = 498 kgr = distance between ships = 35 m

Therefore,

[tex]F=\frac{(6.67\ x\ 10^{-11}\ N.m^2/kg^2)(500\ kg)(498\ kg)}{(35\ m)^2}\\\\[/tex]

F = 1355.78 N = 1.356 KN

Learn more about Newton's Law of Gravitation here:

https://brainly.com/question/9373839

Two space ships traveling next to each other. The first one is 500 kg and the second one is 498 kg. They are 35 meters apart, the Force of gravity between the two spaceships is 1355.78 N.

It is given that the First spaceship's weight ([tex]m_{1}[/tex]) is 500 kg,

The second spaceship's weight ([tex]\rm m_{2}[/tex]) is 498 kg.

The distance between spaceships (r) is 35 meters.

It is required to find the Force of gravity between these spaceships.

What is Gravitational force?

It is defined as the force which attracts any two masses in the universe.

By Newton's law of Gravitation:

[tex]\rm F= \frac{Gm_1m_2}{r^2}[/tex]  , Where

[tex]\rm F = The\ force \ of \ gravity \ between \ the \ spaceships\\\rm G= Universal\ Gravitational \ Constant = 6.67 \times 10^{-11} N.m^2/kg^2[/tex]

Putting values in the above formula:

[tex]\rm F = \frac{(6.67\times 10^{-11} N.m^2/kg^2)(500kg)(498kg)}{(35m)^2}[/tex]

F = 1355.78 N = 1.356  KN

Thus, Two spaceships travel next to each other. The first one is 500 kg and the second one is 498 kg. They are 35 meters apart, the Force of gravity between the two spaceships is 1355.78 N.

Learn more about Gravitational Force here:

https://brainly.com/question/3009841

The weight of an object on the moon is less because the _______ on the moon is less.
A. mass
B. kilogram
C. newton
D. acceleration of gravity
E. weight

Answers

Answer:

acceleration of the gravity

Explanation:

The weight of an object on the moon is less because the acceleration of the gravity on the moon is less.

If the range of a projectile's trajectory is six times larger than the height of the trajectory, then what was the angle of launch with respect to the horizontal? (Assume a flat and horizontal landscape.)

Answers

Answer:

H = 1/2 g t^2    where t is time to fall a height H

H = 1/8 g T^2   where T is total time in air  (2 t  = T)

R = V T cos θ       horizontal range

3/4 g T^2 = V T cos θ       6 H = R    given in problem

cos θ = 3 g T / (4 V)           (I)

Now t = V sin θ / g     time for projectile to fall from max height

T = 2 V sin θ / g

T / V = 2 sin θ / g

cos θ = 3 g / 4 (T / V)     from (I)

cos θ = 3 g / 4 * 2 sin V / g = 6 / 4 sin θ

tan θ = 2/3      

θ = 33.7 deg

As a check- let V = 100 m/s

Vx = 100 cos 33.7 = 83,2

Vy = 100 sin 33,7 = 55.5

T = 2 * 55.5 / 9.8 = 11.3 sec

H = 1/2 * 9.8 * (11.3 / 2)^2 = 156

R = 83.2 * 11.3 = 932

R / H = 932 / 156 = 5.97        6 within rounding

A 7 kg ball of clay traveling at 12 m/s collides with a 25 kg ball of clay traveling in the
same direction at 6 m/s. What is their combined speed if the two balls stick together
when they touch?

Answers

Answer:

Given:

m1 = 7 kg

V1 = 12 m/s

m2 = 25 kg

V2 = 6 m/s

To find:

Combined speed of two balls stick together after collision V = ?

Solution:

According to law of conservation of momentum,

m1V1 + m2V2 = (m1+m2)V

7×12 + 25×6 = (7+25)V

84 + 150 = 32V

V = 234/32

V = 7.31 m/s

Combined speed of two ball is 7.31 m/s

Thanks for joining brainly community!

A bucket of mass m is attached to a rope that is wound around the outside of a solid sphere (I = 2/5 M^2) of radius R. When the bucket is allowed to fall from rest, it falls with an acceleration of a down. What is the mass of the sphere in terms of m, R, a, and g?

Answers

Answer:

[tex]\displaystyle \sqrt{\frac{(5/2)\, (g - a)\, m\, R^{2}}{M^{2}\, a}}[/tex], assuming that the tension in the rope is the only tangential force on the sphere ([tex]g[/tex] denote the gravitational acceleration.)

Explanation:

The forces on the bucket are:

Weight of the bucket: [tex]m\, g[/tex] (downward.)Tension in the rope (upward.)

Since the weight of the bucket and the tension from the rope are in opposite directions, the magnitude of the net force would be:

[tex]\begin{aligned} \|\text{Net Force}\| =\; & \|\text{Weight}\| - \|\text{Tension}\| \end{aligned}[/tex].

The upward tension in the rope prevents the bucket from accelerating at [tex]g[/tex] (free fall.) Rather, the bucket is accelerating at an acceleration of only [tex]a[/tex]. The net force on the bucket would be thus [tex]m\, a[/tex].

Rearrange the equation for the net force on the bucket to find the magnitude of the tension in the rope would be:

[tex]\begin{aligned} & \|\text{Tension}\| \\ =\; & \|\text{Weight}\| - \|\text{Net Force}\| \\ =\; & m\, g - m\, a \\ =\; & (g - a)\, m\end{aligned}[/tex].

At a distance of [tex]R[/tex] from the center of the sphere, the tension in the rope [tex](g - a)\, m[/tex] would exert a torque of [tex](g - a)\, m\, R[/tex] on the sphere. If this tension is the only tangential force on this sphere, the net torque on the sphere would be [tex](g - a)\, m\, R\![/tex].

Let [tex]M[/tex] denote the mass of this sphere. The moment of inertia of this filled sphere would be [tex]I = (2/5)\, M^{2}[/tex].

Therefore, the magnitude of the angular acceleration of this sphere would be:

[tex]\begin{aligned}& \|\text{Angular Acceleration}\| \\ =\; & \frac{\|\text{Net Torque}\|}{(\text{Moment of Inertia})} \\ =\; & \frac{(g - a)\, m\, R}{(2/5)\, M^{2}} \end{aligned}[/tex].

The bucket is accelerating at a magnutide of [tex]a[/tex] downwards. The rope around the sphere need to unroll at an acceleration of the same magnitude, [tex]a\![/tex]. The tangential acceleration of the sphere at the surface would also need to be [tex]\! a[/tex].

Since the surface of the sphere is at a distance of [tex]R[/tex] from the center, the angular acceleration of this sphere would be [tex](a / R)[/tex].

Hence the equation:

[tex]\begin{aligned}& \frac{(g - a)\, m\, R^{2}}{(2/5)\, M^{2}} = \|\text{Angular Acceleration}\| = \frac{a}{R} \end{aligned}[/tex].

Solve this equation for [tex]M[/tex], the mass of this sphere:

[tex]\begin{aligned}& \frac{(g - a)\, m\, R^{2}}{(2/5)\, M^{2}} = \frac{a}{R} \end{aligned}[/tex].

[tex]\begin{aligned}M^{2} &= \frac{(g - a)\, m\, R^{2}}{(2/5)\, a} \\ &= \frac{(5/2)\, (g - a)\, m\, R^{2}}{a}\end{aligned}[/tex].

[tex]\begin{aligned}M&= \sqrt{\frac{(5/2)\, (g - a)\, m\, R^{2}}{a}}\end{aligned}[/tex].

A wire is attached to the ceiling so that the current flows south to north. A student is standing directly below the wire facing north. What is the direction of the B-field (caused by the current in the wire) at this observation point

Answers

Answer:

If one wraps the fingers around the wire and points the thumb in the direction of the "conventional" current the fingers will point towards the North pole - the direction of the B-field.

In this case the B-field is pointed "West".

cornvet 500000grams in short form of using suitable prefix.​

Answers

Answer:

0.5 mega grams

Explanation:

a 1. You found that the MCB was tied with a thread and the thread was fixed with a nail on the wall in your friend's house. i. Is it good idea to do this? ii. What could be the possible hazard of this? iii. What should have done to keep the circuit safe?​

Answers

The miniature circuit breaker should rather be fastned to a wall using nails and other neccessary tools.

What is a miniature circuit breaker?

A miniature circuit breaker is a circuit breaker that is used in homes as a means of guarding against damage to appliances due to a very high current.

This miniature circuit breaker is also harzardous in the sense that it could lead to an electrical fault related fire outbreak especially when it is being blown freely by wind as you tie it with a thread. Doing this a very bad idea because of the risk of a fire hazard.

The miniature circuit breaker should rather be fastned to a wall using nails and other neccessary tools.

Learn more about miniature circuit breaker: https://brainly.com/question/1298425

Read the text below. Each sentence is about one, two or no energy at all. (5 points) Name the type (s) of energy for each sentence, or leave the space blank (if in the sentence no energy is mentioned). Artan decided to paint the house. He moved the furniture, climbed the stairs, and began work. After two hours he took a break, ate lunch and turned on the radio to listen to some music. When done, turn on a heater to allow the paint to dry as quickly as possible. At dinner everything had ended. a) ............................................................................................................................................ b) ............................................................................................................................................ c) ............................................................................................................................................ d) ............................................................................................................................................     e) ............................................................................................................................................​

Answers

Yellow orange green green bowls green orange green bowls orange orange juice

1. What is the distance covered by a T-Rex that goes from 0 m/s to 9 m/s in 6.78 seconds? (10
points)

Answers

With the use of first and third equation of motion, the distance covered by a T-Rex is 30.51 m

Linear Motion

When a body is in linear motion, the body is moving in a straight line. some of the parameters to consider are:

Distance coveredSpeedVelocityAccelerationE.T.C

Given that a T-Rex move from 0 m/s to 9 m/s in 6.78 seconds, the distance covered can be found by calculating the acceleration.

Let us use equation 1

V = U + at

9 = 0 + 6.78a

a = 9 / 6.78

a = 1.33 m/[tex]s^{2}[/tex]

Now let us use equation 3

[tex]v^{2}[/tex] = [tex]u^{2}[/tex] + 2as

[tex]9^{2}[/tex] = 2 x 1.33 x S

81 = 2.655S

S = 81/2.655

S = 30.51 m

Therefore, the distance covered by a T-Rex is 30.51 m.

Learn more about Linear Motion here: https://brainly.com/question/12721831

What is the x component of a vector that is defined as
45m at -35°?

Answers

the x- component of the vector is 36.86 m.

What is a vector?

Vectors are quantities that have both magnitude and direcion

To calculate the x-component of the vector, we use the formula below.

Formula:

dx = dcosθ.......... Equation 1

Where;

dx = x-component of the vectord = vector between the x-y componentθ = Angle of the vector to the horizontal.

From the question,

Given:

d = 45 mθ = -35°

Substitute these values into equation 1

dx = 45cos(-35°)dx = 45×0.918dx = 36.86 m.

Hence, the x- component of the vector is 36.86 m.

Learn more about vector here: https://brainly.com/question/25705666

How much force is required to pull a spring 3.0 cm from its equilibrium position if the spring constant is 20 N/m?

Answers

Distance=3cm=0.03mSpring constant=k=20N/mForce=F

[tex]\\ \rm\rightarrowtail F=-kx[/tex]

[tex]\\ \rm\rightarrowtail F=-20(0.03)[/tex]

[tex]\\ \rm\rightarrowtail F=-0.6N[/tex]

a 2.99 kg sphere makes a perfectly inelastic collision with a second sphere that is intially at rest. the composite moves with a speed equal to one third the original speed of the 2.99kg. what is the mass of the second sphere?​

Answers

Answer:

5.98 kg

Explanation:

To solve this problem, let use the Linear Momentum Conservation Law:

Before collision: [tex]\sum p=p_{1}+p_{2}=m_{1}v_{1}+m_{2}v_{2}=(2.99v_{1})+0=2.99v_{1}[/tex]

After collision: [tex]\sum p'=p_{1}'+p_{2}'=(2.99+m_{2})(v_{1}/3)[/tex]

So, we obtain:

[tex]\sum p =\sum p' \rightarrow 2.99v_{1}=(2.99+m_{2})(v_{1}/3) \rightarrow 8.97 = 2.99 + m_{2}[/tex]

[tex]m_{2}=8.97-2.99=5.98 kg[/tex]

A 1980-kg car is traveling with a speed of 15.5 m/s. What is the magnitude of the horizontal net force that is required to bring the car to a halt in a distance of 39.2 m

Answers

Answer: 6067.5 N

Explanation:

Work = Change in Energy. To start, all of the energy is kinetic energy, so find the total KE using: KE = 1/2(m)(v^2). Plug in 1980 kg for m and 15.5 m/s for v and get KE = 237847.5 J.

Now, plug this in for work: Work = Force * Distance; so, divide work by distance to get 6067.5 N.

Someone please help me !!

Answers

Answer:25

Explanation: because higher means less kinetic energ

A train moves from rest to a speed of 22 m/s in 34.0 seconds. What is its acceleration?

Answers

Answer: a = 0.647 m/s^2

Explanation:

Acceleration = change in speed / time → a = 22 / 34 → a = .647 m/s^2

A source of light emits photons with a wavelength of 8.1 x 10-8 meters. What is the frequency of this light

Answers

Answer:

Explanation:

Speed of light v = 3 x 10⁸ m/s

wavelength λ = 8.1 x 10⁻⁸ m

frquency f = v/λ = 3.7 x 10¹⁵ Hz

If a source of light emits photons with a wavelength of 8.1 x 10⁻⁸ meters, then the frequency of the light would be 3.7 × 10¹⁵ Hz, as the wavelength and the frequency of the photon are inversely proportional to each other.

What is Wavelength?

It can be understood in terms of the distance between any two similar successive points across any wave for example wavelength can be calculated by measuring the distance between any two successive crests.

C = λν

As given in the problem if a source of light emits photons with a wavelength of 8.1 x 10⁻⁸ meters, then we have to find out the frequency of the light,

The frequency of the light = 3 × 10⁸ / 8.1 x 10⁻⁸

                                            =3.7 × 10¹⁵ Hz

Thus, the frequency of the light would be 3.7 × 10¹⁵ Hz

To learn more about wavelength, refer to the link given below ;

brainly.com/question/7143261

#SPJ5

An electron with an initial speed of 700,000 m/s is brought to rest by an electric field. What was the potential difference that stopped the electron? What was the initial kinetic energy of the electron, in electron volts?

Answers

Answer:

See below.

Explanation:

According to the question, we know that,

work done is given by,  [tex]W=qV[/tex]

and change in kinetic energy is, Δ [tex]KE=W=1=1/2[mv^{2} ][/tex]

therefore equating both the equations we get,

[tex]qV=1/2[mv^{2} ][/tex] ⇒ [tex]V=\frac{mv^{2} }{2q}[/tex]

m= mass of electron =  [tex]9.1*10^{-31} kg[/tex]

q= charge on an electron = [tex]1.6*10^{-19} C[/tex]

v= speed of electron= 700000m/s

substituting the values in the above equation, we get

[tex]V=\frac{9.1*10^{-31} *(700000)^{2} }{2*1.6*10^{-19} } =1.39V[/tex]

(1).  the potential difference that stopped the electron is 1.39 volts.

now the kinetic energy equation is :  2 ways[tex]KE=1/2[mv^{2} ]=\frac{9.1*10^{-31} *700000^{2} }{2} =2.22*10^{-19} J\\[/tex]

or [tex]KE=\frac{2.22*10^{-19} }{1.6*10^{-19} } =1.39eV[/tex]

(2).  the initial kinetic energy of the electron is 1.39eV.

can somebody please help

Answers

The amplitude of the wave on the given sinusoidal wave graph is 10 cm.

What is amplitude of wave?

The amplitude of a wave is the maximum displacement of a wave. This is the highest vertical position of the wave from the origin.

Amplitude of the wave is calculated as follows;

From the graph, the amplitude of the wave or maximum displacement of the wave is 10 cm.

Thus, the amplitude of the wave on the given sinusoidal wave graph is 10 cm.

Learn more about wave amplitude here: https://brainly.com/question/25699025

A magnet gets demagnetized when it is heated.​

Answers

Answer:

The delicate balance between temperature and magnetic domains is destabilized when a magnet is subjected to high temperatures. If a magnet is exposed to this temperature for an extended length of time or heated over its Curie temperature, it will lose its magnetism and become irreversibly demagnetized.

Explanation:

Alex (31kg) and Cassie (19Kg) sit on a 10kg metre-long see-saw at the local park. The pivot of the see-saw is in the middle of its length. If Cassie sits at one end of the see-saw, where relative to the other end must Alex sit so the net torque is balanced? (unit:metres)

Answers

Answer:

M1 g L1 = 19 kg * 9.8 m/s^2 * 5 m = counter clockwise torque - Cassie at left end

M1 g L1 = M2 g L2        for torques to balance

L2 = M1 L1 / M2 = 19 * 5 / 31 = 3.06 M

Alex should sit at 3.1 m from the fulcrum (at 5 m from each end)

the radius of a ball is increasing at a rate of 2 mm per second. how fast is the volume of the ball increasing when the diameter is 40 mm

Answers

Step 1: Define an equation that relates the volume of a sphere to its radius.

V = 4/3*π*r3

Step 2: Take the derivative of each side with respect to time (we will define time as "t").

(d/dt)V = (d/dt)(4/3*π*r3)

dV/dt = 4πr2*dr/dt

Step 3: We are told in the problem statement that diameter is 100m, so therefore r = 50mm. We are also told the radius of the sphere is increasing at a rate of 2mm/s, so therefore dr/dt = 2mm/s. We are looking for how fast the volume of the sphere is increasing, or dV/dt.

dV/dt = 4π(50mm)2*(2mm/s)

dV/dt = 62,832 mm3/s

The two graphs shown represent the motion of two blocks with different masses, m1 and m2. The blocks are oscillating on identical springs. Which of the following statements correctly describes the relationship between m1 and m2 and provides evidence from the graphs?

Answers

Answer:

M1 would seem to be slower because of a larger mass

x1 = A1 sin ω1 t1        describes the displacement

ω1 / ω2 = ((k1 / k2) / (m1 / m2))^1/2 = (m2 / m1)^1/2  since k's are equal

ω1 / ω2 = 1/2 from graph    (frequency of 2 is greater)

(m1 / m2)^1/2 = ω2 / ω1    from above

m1 / m2 = 2^2 = 4    so m1 would have 4 times the mass of m2

M1 would seem to be slower because of a larger mass

x1 = A1 sin ω1 t1      

ω1 / ω2 = ((k1 / k2) / (m1 / m2))^1/2 = (m2 / m1)^1/2  since k's are equal

ω1 / ω2 = 1/2 from graph   (frequency of 2 is greater)

(m1 / m2)^1/2 = ω2 / ω1   from above

m1 / m2 = 2^2 = 4    so m1 would have 4 times the mass of m2.

What is the graph represents?

The two graphs shown represent the motion of two blocks with different masses, m1 and m2. The blocks are oscillating on identical springs. For the system consisting of the two blocks, the change in the kinetic energy of the system is equal to work done by gravity on the system. For the system consisting of the two blocks, the pulley and the Earth, the change in the total mechanical energy of the system is zero.

The two graphs shown represent the motion of two blocks with different masses, m1 and m2. The blocks are oscillating on identical springs. For the system consisting of the two blocks, the change in the kinetic energy of the system is equal to work done by gravity on the system.

Therefore, M1 would seem to be slower because of a larger mass

x1 = A1 sin ω1 t1      

ω1 / ω2 = ((k1 / k2) / (m1 / m2))^1/2 = (m2 / m1)^1/2  since k's are equal

ω1 / ω2 = 1/2 from graph   (frequency of 2 is greater)

(m1 / m2)^1/2 = ω2 / ω1   from above

m1 / m2 = 2^2 = 4    so m1 would have 4 times the mass of m2.

Learn more about graph on:

https://brainly.com/question/17267403

#SPJ2


At an altitude of 1.3x10^7 m above the surface of the earth an incoming meteor mass of 1x10^6 kg has a speed of 6.5x10^3 m/s. What would be the speed just before impact with the surface of earth?Ignore air resistance.


Show all steps.

Answers

Answer:

Approximately [tex]1.1 \times 10^{4}\; {\rm m\cdot s^{-1}}[/tex] if air friction is negligible.

Explanation:

Let [tex]G[/tex] denote the gravitational cosntant. Let [tex]M[/tex] denote the mass of the earth. Lookup the value of both values: [tex]G \approx 6.67 \times 10^{-11}\; {\rm N\cdot m^{2}\cdot kg^{-2}}[/tex] while [tex]M \approx 5.697 \times 10^{24}\; {\rm kg}[/tex].

Let [tex]m[/tex] denote the mass of the meteor.

Let [tex]v_{0}[/tex] denote the initial velocity of the meteor. Let [tex]r_{0}[/tex] denote the initial distance between the meteor and the center of the earth.

Let [tex]r_{1}[/tex] denote the distance between the meteor and the center of the earth just before the meteor lands.

Let [tex]v_{1}[/tex] denote the velocity of the meteor just before landing.

The radius of planet earth is approximately [tex]6.371 \times 10^{6}\; {\rm m}[/tex]. Therefore:

At an altitude of [tex]1.3 \times 10^{7}\; {\rm m}[/tex] about the surface of the earth, the meteor would be approximately [tex]r_{0} \approx 6.371 \times 10^{6}\; {\rm m} + 1.3 \times 10^{7}\; {\rm m} \approx 1.9 \times 10^{7}\; {\rm m}[/tex] away from the surface of planet earth. The meteor would be only [tex]r_{1} \approx 6.371 \times 10^{6}\; {\rm m}[/tex] away from the center of planet earth just before landing.

Note the significant difference between the two distances. Thus, the gravitational field strength (and hence acceleration of the meteor) would likely have changed significant during the descent. Thus, SUVAT equations would not be appropriate.

During the descent, gravitational potential energy ([tex]\text{GPE}[/tex]) of the meteor was turned into the kinetic energy ([tex]\text{KE}[/tex]) of the meteor. Make use of conservation of energy to find the velocity of the meteor just before landing.

Initial [tex]\text{KE}[/tex] of the meteor:

[tex]\displaystyle (\text{Initial KE}) = \frac{1}{2}\, m\, {v_{0}}^{2}[/tex].

Initial [tex]\text{GPE}[/tex] of the meteor:

[tex]\displaystyle (\text{Initial GPE}) &= -\frac{G\, M\, m}{r_{0}}[/tex].

(Note the negative sign in front of the fraction.)

Just before landing, the [tex]\text{KE}[/tex] and the [tex]\text{GPE}[/tex] of this meteor would be:

[tex]\displaystyle (\text{Final KE}) = \frac{1}{2}\, m\, {v_{1}}^{2}[/tex].

[tex]\displaystyle (\text{Final GPE}) &= -\frac{G\, M\, m}{r_{1}}[/tex].
If the air friction on this meteor is negligible, then by the conservation of mechanical energy:

[tex]\begin{aligned}& (\text{Initial KE}) + (\text{Initial GPE}) \\ =\; & (\text{Final KE}) + (\text{Final GPE})\end{aligned}[/tex].

[tex]\begin{aligned}& \frac{1}{2}\, m\, {v_{0}}^{2} - \frac{G\, M\, m}{r_{0}} \\ =\; & \frac{1}{2}\, m\, {v_{1}}^{2} - \frac{G\, M\, m}{r_{1}}\end{aligned}[/tex].

Rearrange and solve for [tex]v_{1}[/tex], the velocity of the meteor just before landing:

[tex]\begin{aligned}{v_{1}} &= \sqrt{\frac{\displaystyle \frac{1}{2}\, m\, {v_{0}}^{2} - \frac{G\, M\, m}{r_{0}} + \frac{G\, M\, m}{r_{1}}}{(1/2)\, m}} \\ &= \sqrt{{v_{0}}^{2} - \frac{G\, M}{r_{0}} + \frac{G\, M}{r_{1}}} \\ &= \sqrt{{v_{0}}^{2} - G\, M\, \left(\frac{1}{r_{1}} - \frac{1}{r_{0}}\right)}\end{aligned}[/tex].

Substitute in the values and evaluate:

[tex]\begin{aligned}v_{1} &= \sqrt{{v_{0}}^{2} - G\, M\, \left(\frac{1}{r_{1}} - \frac{1}{r_{0}}\right)} \\ &\approx \sqrt{\begin{aligned}(& 6.5 \times 10^{3}\; {\rm m \cdot s^{-1}}) \\ & - [6.67 \times 10^{-11}\; {\rm N \cdot {m}^{2}\cdot {kg}^{2} \times 5.697\; {\rm kg}}\\ &\quad\quad \times (1 / (6.371 \times 10^{6}\; {\rm m}) - 1 / (1.9371 \times 10^{7}\; {\rm m}))]\end{aligned}} \\ &\approx 1.1 \times 10^{4}\; {\rm m\cdot {s}^{-1}}\end{aligned}[/tex].

(Note that assuming a constant acceleration of [tex]g = 9.81\; {\rm m\cdot s^{-2}}[/tex] would give [tex]v_{1} \approx 1.7\times 10^{4}\; {\rm m\cdot s^{-1}}[/tex], an inaccurate approximation.

A small block, with a mass of 250 g, starts from rest at the top of the apparatus shown above. It then slides without friction down the incline, around the loop, and then onto the final level section on the right. The maximum height of the incline is 80 cm, and the radius of the loop is 15 cm.

a.) Find the initial energy of the block.

b.) Find the velocity of the block at the bottom of the loop.

c.) Find the velocity of the block at the top of the loop.

Answers

(a) The initial energy of the block due to its position is 1.96 J.

(b) The velocity of the block at the bottom of the loop is 3.96 m/s.

(c)  the velocity of the block at the top of the loop is 3.13 m/s.

Initial energy of the block

The initial energy of the block due to its position is calculated as follows;

P.E = mgh

P.E = 0.25 X 9.8 X 0.8

P.E = 1.96 J

Conversation of the energy

The velocity of the block at the bottom of the loop is determined by applying the principle of conservation of energy as shown below;

P.Ei + P.Ef = K.Ei + K.Ef

1.96 + 0 = 0 + ¹/₂mvf²

vf² = 2(1.96)/m

vf² = (2 x 1.96) / (0.25)

vf² = 15.68

vf = √15.68

vf = 3.96 m/s

Velocity of the block at top of the loop

The velocity of the block at the top is calculated by applying principle of conservation of energy,

P.Ei + P.Ef = K.Ei + K.Ef

1.96 = mghf + ¹/₂mvf²

where;

hf is the position of the ball at the top of the loop = 2r = 2 x 15 cm = 30 cm = 0.3

1.96 = 0.25 x 9.8 x 0.3   +   0.5 x 0.25vf²

1.225 = 0.125vf²

vf² = 1.225/0.125

vf² = 9.8

vf = 3.13 m/s

Learn more about conservation of energy here: https://brainly.com/question/166559

The amount of energy released when 45 g of -175° C steam is cooled to 90° C is


A. 101,700 J


B. 317,781 J


C. 419,481 J


D. 417,600 J

Answers

Answer:

The answer should be choice B.

Which planet is the farthest?

Answers

The planet that is the farthest is Neptune, pls make me brainliest:)

5 waves with a length of 4m hit the shore every 2 seconds, what is the frequency?

Answers

The frequency of the 5 waves with a length of 4m hit the shore every 2 seconds is 2.5 Hz.

What is frequency?

This is the number of cycles completed by a wave in one second. The s.i

unit of frequency is Hert (Hz).

From the question, to calculate the frequency of 5 waves with length of 4 m that hit the shores every 2 seconds, we use the formula below.

Formula:

F = n/t........... Equation 1

Where:

n = Number of waveF = Frequencyt = time

From the question,

Given:

n = 5 waves t = 2 seconds

Substitute these values into equation 1

F = 5/2F = 2.5 Hz.

Hence, The frequency of the wave is 2.5 Hz.

Learn more about frequency here: https://brainly.com/question/254161

Other Questions
Part A: Find the circumference of the circle. (Pi = 3.14)Part B: Find the area of the circle(IMAGE ATTATCHED) Escribe una oracin con cada uno de los verbosconjugados que se muestran a continuacin:1. Vivo2. Saltas3. Aman help please!btw also um answer this question: when was the starry night painted?also here's a funny meme, and read psalms 91 have a good day! answer if you are in K 1 2 A Cyclist rides her bike of a rate of 18 Kilometers per hour. What is this rate in Kilometers per minute? How many Kilometers will the cyclist travel in 20 minutes? Do not Round your answers. advantages and disadvantages of sea walls artificial reefbreakwatersgroynesdraining cliffsbarragesmanaged retreatsPLEASE ANSWER I'M DYING PLEASE !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Which linux operating system would you suggest to install at my laptop. I don't know how to solve this need help please i reeally need help the square below has anarea of 49ft2 what is the perimeter of the square what are some economic choices teasha had to make Y+1.27=7.23 solve for y Constants are numbers without letters attached.What is the constant in the equation x/2 - 3?answers:2-3 How many subsets does the following set (4,5,6,7,8) have? I will give the brainiest if you get it right. Jana has $100 to open a checking account. she can maintain a monthly balance of $300. she also has a savings account at the same bank. she plans to use online bill paying and write fewer than 10 checks per month. she currently uses her banks atm several times per month. jana does not overdraw her account. bank account terms and conditions bank account terms and conditions. bank b is best for jana. jana wants an account with the lowest fees. which checking account would be best for jana? account a account b account c account d YASHARI earns $27,000 per year, is single, and lives in Wyoming. She has $7000 in Direct Subsidized loans and another $19,000 in Direct Unsubsidized loans. She is trying to save up an emergency fund of at least 6 months take-home pay, so shes torn about how much she should devote to her student loans and how much to the emergency fund every month.How do you think Yashari should prioritize between her emergency fund goal and her student loan payments? solve please. find volume Given the function h of x equals negative 2 times the square root of x, which statement is true about h(x)? The function is decreasing on the interval (0, ). The function is decreasing on the interval (, 0). The function is increasing on the interval (0, ). The function is increasing on the interval (, 0). What is the slop of the line?5(y+2)=4(x-3)A. 3/2B. 2/3C. 4/5D. 5/4