Answer:
23 gallons
Step-by-step explanation:
Given:
A barn is shaped like a rectangular prism with a triangular prism on top as shown.
The exterior four walls and two triangular faces need to be repainted.
To Find:
If one gallon of paint covers 232 square feet, how many gallons will it take to repaint the barn?
Solve:
[tex]12\cdot38\div2\cdot2+84\cdot20+38\cdot20\cdot2[/tex]
= [tex]5336\;square\;feet[/tex]
[tex]\frac{5336}{232}=23[/tex]
Hence 23 gallons to repaint the barn
~lenvy~
PLEASE HELP PLEASE PLEASE HELP
Answer:
Our Sun is a bright, hot ball of hydrogen and helium at the center of our solar system. It is 864,000 miles (1,392,000 km) in diameter, which makes it 109 times wider than Earth. It's 10,000 degrees Fahrenheit (5,500 degrees Celsius) at the surface, and 27 million degrees Fahrenheit (15,000,000 degrees Celsius) in the core.
Step-by-step explanation:
did this help
The Sun is the star at the center of the Solar System. It is a nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy mainly as visible light and infrared radiation. It is by far the most important source of energy for life on Earth. maybe this will help a little
You randomly draw twice from this deck of cards
0 с G|F. D C G
What is the probability of not drawing a C, then not drawing a C,
without replacing the first card? Write your answer as a decimal
rounded to the nearest hundredth.
The probability of not drawing C in neither draw is P = 0.5
How to get the probability?
All the cards have the same probability of being drawn, in this case, our set of cards is {F, D, C, G}
The probability of not drawing C is equal to the probability of drawing F, D or G. So we have 3 options out of 4, then the probability is:
p = 3/4.
Now we draw another, this time there are 3 cards, one of these is C, and the other two cards are not C. Then the probability of not drawing C again is equal to 2 over 3.
q = 2/3.
The joint probability (for both of these events to happen) is equal to the product of the individual probabilities:
P = p*q = (3/4)*(2/3) = 0.5
If you want to learn more about probability, you can read:
https://brainly.com/question/251701
How do I solve it the problem completely
Answer:
42 in²
Step-by-step explanation:
Total: Shape 1 + Shape 2
Area of a square: l x w, where l is the length and w is the width.
= 6 x 5
= 30
Area of a triangle: 1/2 x b x h, where b is the base and h is the height.
= 1/2 x 4 x 6
= 1/2 x 24
= 12
Total = 30 + 12
= 42 in²
Answer:
Step-by-step explanation:
This figure is trapezium
a and b are the parallel lines.
a = 5 +4 = 9 in & b = 5 in and h = 6 in
[tex]\boxed{\text{Area of trapezium =$\dfrac{(a+b)*h}{2}$}}[/tex]
[tex]\sf = \dfrac{(9+5)*6}{2}\\\\=\dfrac{14*6}{2}\\\\= 7*6\\\\= 42 \ in^{2}[/tex]
. Gemma plans to run 5 miles her first week and increase the amount she runs each week by 20% Which of the following is closest to the total distance Genna has run after 10 weeks.
A: 115 miles. B: 130 miles
C: 138 miles. D: 145 miles
Need help on number 10
If tan C is 3/4, find the sin C.
Answer:
sin C = 3/5
Step-by-step explanation:
see image.
It helps to draw a picture. Tan C is the ratio of the OPP/ADJ.
Pythagorean theorem or if you know Pythagorean triples are a shortcut to find the hypotenuse.
Once you know the hypotenuse, use the ratio for sine to solve the question. Sine is OPP/HYP.
see image.
Vocabulary
1. Volume: A measure of ________ occupied by a __________-________________ figure.
1. Base: The __________ on which an object _______.
1. Height: The ______ distance from top to bottom, creates a ___-degree angle with the base.
1. Inverse Operation: The ________ of a math operation; the opposite of addition is ________ and the opposite of multiplication is ________.
1. Diameter: A ________ line going from one side of a ______ to the other through the _______.
1. Radius: The distance from the ______ to the ______ of a ______; _____ of the diameter.
Volume of a Cylinder
A ____________ is a _____________________ object with a _________________ base and top.
To find the ____________ of a ______________ we use the following formula:
Answer:
Step-by-step explanation:
. Volume: A measure of _space occupied by a _three dimensional _ figure.
1. Base: The surface on which an object stands on.
1. Height: The _vertical distance from top to bottom, creates a _90° degree angle with the base.
1. Inverse Operation: The opposite of a math operation; the opposite of addition is subtraction and the opposite of multiplication is division.
1. Diameter: A straight line going from one side of a point on a circle to the other through the _center.
1. Radius: The distance from the center to the point of a circle;or half of the diameter.
Volume of a Cylinder
A cylinder is a three dimensional object with a circular base and top.
To find the volume of a cylinder we use the following formula:πr²h
How do you know that the Pythagorean Theorem is true?
The fact that the angles in a triangle add up to 180 indicates that it is actually a square). There are also four right triangles, each with a base and a height. The Pythagorean Theorem is reached when a2 + b2 = c2.
will give brainliest but it Has to be correct.
Measure the thumbtack to the nearest inch.
6/8 inches
7/8 inches
3/8 inches
5/8 inches
Answer: 6/8 inch
Step-by-step explanation:
find the value of x
Answer:
See below, please
Step-by-step explanation:
[tex](2x + 9) + (4x - 3) = 90[/tex]
[tex]6x + 6 = 90[/tex]
[tex]6x = 90 - 6 = 84[/tex]
Hence
[tex]x = 14[/tex]
3 and 15 find the range of missing side
Answer:
draw a square with a side length of 2.5 cm. label it CARL
Draw the circle with center A passing through C
draw SEGMENT CR
draw the straight line d passing through A and perpendicular to CR
Answer:
12 < x < 18
Step-by-step explanation:
Assuming these are 2 sides of a triangle, then
given 2 sides of a triangle , the 3rd side x is in the range
difference of 2 sides < x < sum of 2 sides , that is
15 - 3 < x < 15 + 3
12 < x < 18
Solve (image attached)
Answer:
70 degrees
Step-by-step explanation:
We know that a straight line is 180 degrees so this equation can be used:
80 + x + 30 = 180
110 + x = 180
x = 70
Hope this helps :)
The loudness (L) of sound in decibels is related to intensity (I)measured in watts per square centimeter by the equation: L = 10log( I 10-16 ). Find the loudness of a whisper at 10-12 W/cm2. A) 35 decibels B) 40 decibels C) 45 decibels D) 50 decibels
The function L= 10 log(I/10^-16) is a logarithmic equation
The loudness of the whisper is 40 decibels
How to determine the loudness?The function of the loudness is given as:
L= 10 log(I/10^-16)
When the intensity is 10^-12, the equation becomes
L= 10 log(10^-12/10^-16)
Evaluate the quotient
L= 10 log(10^4)
Apply the rule of logarithm
L= 10 * 4
Evaluate the product
L = 40
Hence, the loudness of the whisper is 40 decibels
Read more about decibels at:
https://brainly.com/question/25480493
Eva filled a bucket with 7 gallons of water. A few minutes later, she realizes only 1 3/5 of water remained. How much water had leaked out of the bucket?
Answer:
[tex]6 \frac{2}{5}[/tex]Step-by-step explanation:
[tex]7 - 1 \frac{3}{5} = 6 \frac{2}{5}[/tex]
. A particle moves on a line away from its initial position so that after t seconds its distance is s = 3t^2+tmeters from its initial position. (a) At what time does the particle have a velocity of 25 m/s? (b) Is the acceleration ever 0? Why or why/not? Explain your answer
pls solve and explain fast
Answer:
The velocity of this particle is [tex]25\; {\rm m \cdot s^{-1}}[/tex] at [tex]t = 4\; {\rm s}[/tex].
Acceleration is constantly [tex]6\; {\rm m\cdot s^{-2}}[/tex] (and thus is never [tex]0[/tex].)
Step-by-step explanation:
The distance between the particle and the initial position is the displacement of this particle. Let [tex]x(t)[/tex] denote the displacement (in meters) of this particle at time [tex]t[/tex] (in seconds.) The question states that [tex]x(t) = 3\, t^{2} + t[/tex].
Differentiate displacement [tex]x(t)[/tex] with respect to time [tex]t[/tex] to find the velocity [tex]v(t)[/tex] (in [tex]{\rm m \cdot s^{-1}}[/tex]) of this particle:
[tex]\begin{aligned}v(t) &= \frac{d}{d t}\left[x(t)\right] \\ &= \frac{d}{d t}\left[3\, t^{2} + t\right] \\ &= 6\, t + 1 \end{aligned}[/tex].
Set velocity to [tex]25\; {\rm m\cdot s^{-1}}[/tex] and solve for time [tex]t[/tex] (in seconds):
[tex]v(t) = 25[/tex].
[tex]6\, t + 1 = 25[/tex].
[tex]t = 4[/tex].
Thus, the velocity of this particle is [tex]25\; {\rm m \cdot s^{-1}}[/tex] at [tex]t = 4\; {\rm s}[/tex].
Differentiate velocity [tex]v(t)[/tex] with respect to time [tex]t[/tex] to find the acceleration (in [tex]{\rm m\cdot s^{-2}}[/tex]) of this particle:
[tex]\begin{aligned}a(t) &= \frac{d}{d t}\left[v(t)\right] \\ &= \frac{d}{d t}\left[6\, t + 1\right] \\ &= 6\end{aligned}[/tex].
In other words, the acceleration of this particle is constantly equal to [tex]6\; {\rm m\cdot s^{-2}}[/tex]. Hence, the acceleration of this particle is never [tex]0[/tex].
Divya spends all of her free time playing with her building blocks. She owns building block sets with 333 pieces, 555 pieces, and 101010 pieces. Divya knows she owns 555 sets with 555 pieces and 222 sets with 101010 pieces. She also knows that she averages 555 pieces per set. This information is summarized in the table below
Answer:
5 sets
Step-by-step explanation:
The average number of pieces per set is the ratio of the total number of pieces to the total number of sets.
Let x represent the number of 3-piece sets. Then the total number of pieces is ...
3x +5(5) +10(2) = 3x +45
The total number of sets is ...
x +5 +2 = x +7
We want the ratio of these numbers to be 5 pieces per set:
(3x +45)/(x +7) = 5
3x +45 = 5x +35 . . . . . multiply by (x+7)
10 = 2x . . . . . . . . . . subtract (3x+35)
5 = x . . . . . . . . . divide by 2
Divya owns 5 sets with 3 pieces.
_____
Alternate solution
Each 10-piece set has 5 more pieces than average, so the two of them total 10 more pieces than average.
Each 3-piece set has 2 fewer pieces than average. The total number of 3-piece sets must have a total of 10 fewer pieces than average in order to balance the excess of the 10-piece sets. That is, there must be 10/2 = 5 of the 3-piece sets to have a total lof 10 fewer pieces than average.
Altogether, the differences from average must total zero.
Sita saves Rs. 1 today, Rs. 2 the next day, Rs. 4 the succeeding day and so on (each saving being twice of the preceding one). What will be total saving in two weeks time?
a
Answer:
Rs. 32767
Step-by-step explanation:
Because the amount is doubling every day, we can use the expression 1*2^15-1 because there is 1 to start with. Also cool trick! if you need to do 2^1+2^2+2^3+....+2^x, it will be equal to 2^(x+1)-1. So:
2^15-1
32768-1
32767
Find the area if the pentagon. I’ll mark the brainiest :)
Answer:
688.19 inches
Step-by-step explanation:
i need help
Simplify the expression 63 + 5(4 − 2).
28
36
226
234
Answer:
226
Step-by-step explanation:
Given:
Simplify 6^3+5(4-2)
Note:
I think you meant 6^3 because if you solve 63+5(4-2):
63+5(4-2)
63+5 * 2
63 + 10
73
Solve:
6^3 + 5(4 - 2 )
6^3 + 5 x 2
6 x 6 x 6 = 216
226 + 5 x 2
5 x 2 = 10
216 + 10 = 226
~Lenvy~
Find the multiplicative inverse of 6/8
It's 8/6
Because 6/8 × 8/6 = 1
Answer:
it's 8/6
I hope it's help u
How can i prove this property to be true for all values of n, using mathematical induction.
ps: spam/wrong answers will be reported and blocked.
Proof -
So, in the first part we'll verify by taking n = 1.
[tex] \implies \: 1 = {1}^{2} = \frac{1(1 + 1)(2 + 1)}{6} [/tex]
[tex] \implies{ \frac{1(2)(3)}{6} }[/tex]
[tex]\implies{ 1}[/tex]
Therefore, it is true for the first part.
In the second part we will assume that,
[tex] \: { {1}^{2} + {2}^{2} + {3}^{2} + ..... + {k}^{2} = \frac{k(k + 1)(2k + 1)}{6} }[/tex]
and we will prove that,
[tex]\sf{ \: { {1}^{2} + {2}^{2} + {3}^{2} + ..... + {k}^{2} + (k + 1)^{2} = \frac{(k + 1)(k + 1 + 1) \{2(k + 1) + 1\}}{6}}}[/tex]
[tex] \: {{1}^{2} + {2}^{2} + {3}^{2} + ..... + {k}^{2} + (k + 1)^{2} = \frac{(k + 1)(k + 2) (2k + 3)}{6}}[/tex]
[tex]{1}^{2} + {2}^{2} + {3}^{2} + ..... + {k}^{2} + (k + 1)^{2} = \frac{k (k + 1) (2k + 1) }{6} + \frac{(k + 1) ^{2} }{6} [/tex]
[tex]{1}^{2} + {2}^{2} + {3}^{2} + ..... + {k}^{2} + (k + 1)^{2} = \frac{k(k+1)(2k+1)+6(k+1)^ 2 }{6} [/tex]
[tex]{1}^{2} + {2}^{2} + {3}^{2} + ..... + {k}^{2} + (k + 1)^{2} = \frac{(k+1)\{k(2k+1)+6(k+1)\} }{6}[/tex]
[tex]{1}^{2} + {2}^{2} + {3}^{2} + ..... + {k}^{2} + (k + 1)^{2} = \frac{(k+1)(2k^2 +k+6k+6) }{6} [/tex]
[tex]{1}^{2} + {2}^{2} + {3}^{2} + ..... + {k}^{2} + (k + 1)^{2} = \frac{(k+1)(2k^2+7k+6) }{6} [/tex]
[tex]{1}^{2} + {2}^{2} + {3}^{2} + ..... + {k}^{2} + (k + 1)^{2} = \frac{(k+1)(k+2)(2k+3) }{6} [/tex]
Henceforth, by using the principle of mathematical induction 1²+2² +3²+....+n² = n(n+1)(2n+1)/ 6 for all positive integers n.
_______________________________
Please scroll left - right to view the full solution.
Solve for x please :)
Answer:
see explanation
Step-by-step explanation:
look photo
[tex]\qquad\qquad\huge\underline{{\sf Answer}}♨[/tex]
The given pair of angles form linear pair, therefore their sum is equal to 180°
that is :
[tex]\qquad \sf \dashrightarrow \:2(x - 26) + 3x + 2 = 180[/tex]
[tex]\qquad \sf \dashrightarrow \:2x - 52 + 3x + 2 = 180[/tex]
[tex]\qquad \sf \dashrightarrow \:5x - 50 = 180[/tex]
[tex]\qquad \sf \dashrightarrow \:5x = 230[/tex]
[tex]\qquad \sf \dashrightarrow \:x = 46 \degree[/tex]
Have a great day ~
spherical water tank of radius R = 5m is emptied through a small circular hole of radius r = 0.03 m at the bottom. The top of the tank is open to the atmosphere. The instantaneous water level h in the tank (measured from the bottom of the tank, at the drain) can be determined from the solution of the following ODE:
dh /dt =r²(2gh)^0.5/ 2hR-h²
where g = 9.81 m/s². If the initial (t = 0) water level is h=6.5 m, compute the time required to drain the tank to a level of h= 0.5m. Use the fourth-order Runge-Kutta method.
Answer:
water level is h=6.5 m, compute the time required to drain the tank to a level of h= 0.5m. Use the fourth-order Runge-Kutta method.
Step-by-step explanation:
water level is h=6.5 m, compute the time required to drain the tank to a level of h= 0.5m. Use the fourth-order Runge-Kutta method.
What is the equation for the translation of x2 + y2 = 16 seven units to the right and five units up?
(x + 7)2 + (y + 5)2 = 16
(x − 7)2 + (y − 5)2 = 16
(x + 7)2 + (y − 5)2 = 16
(x − 7)2 + (y + 5)2 = 16
Answer:
(x − 7)2 + (y − 5)2 = 16Step-by-step explanation:
The given circle has equation
[tex] \sf \: x^2+y^2=16x[/tex]
The equation of a circle with center (h,k) and radius r units is
[tex] \sf(x-h)^2+(y-k)^2=r^2(x−h) [/tex]
[tex] \sf(x-7)^2+(y-5)^2=4^2(x−7)[/tex]
[tex] \sf(x-7)^2+(y-5)^2=16(x−7) [/tex]
❖ Tip❖ :-This is the equation that has its center at the origin with radius 4 units.
When this circle is translated seven units to the right and five units up, then the center of the circle will now be at (7,5).
GIVING BRAINLEST NO LINKS I ONLY CROWN RIGHT ANSWERS!
Select the expression that represents the following statement: The sum of 6 and 8 multiplied by 4.
Answ
Step-by-step explanation:
the equation y=|x|+1 is graphed and then transformed. the transformation is on the graph below. which of the following describes this transformation.
a. up 1 unit
b. down 1 unit
c. right 2 units, down 1 unit
d. right 2 units, down 2 units
Answer:
a. up 1 unit
Step-by-step explanation:
f(x) + k will translate the function up k units
f(x) - k will translate the function down k units
f(x-h) will translate the function right h units
f(x+h) will translate the function left h units
Determine the values of k for which the function f(x) = 4x^2-3x + 2kx + 1 has two zeros. Check these values in the original equation.
k must be greater than or equal to 22.75 to have two different zeros.
How to determine the value of missing coefficient in second order polynomials
Second order polynomials are algebraic expressions that observe the following form:
[tex]p(x) = a\cdot x^2 + b\cdot x + c[/tex] (1)
Where:
a, b, c - Coefficientsx - Independent variableFor polynomials of the form p(x) = 0, we can infer the nature of their roots by applying the following discriminant:
d = b² - 4 · a · c (2)
According to (2), there are three cases:
If d < 0, then there are two conjugated complex roots.If d = 0, then the two roots are the same real number.If d > 0, then the two roots are two distinct real numbers.Now we have the following discriminant case:
-(3 + 2 · k)² - 4 · (1) · (4) ≠ 0
-(9 + 6 · k + 4 · k²) - 16 ≠ 0
-9 - 6 · k - 4 · k² - 16 ≠ 0
4 · k²+ 6 · k +25 ≠ 0
This characteristic polynomial has two conjugated complex roots, then we conclude that all values of k must positive or negative, but never zero. By graphng tools we find that k must be greater than or equal to 22.75 to have two different zeros.
To learn more on polynomials, we kindly invite to check this verified question: https://brainly.com/question/11536910
Find the value of x. 50 degrees 75 degrees
Answer:
The angles measure for x is.... 58 Degrees
Step-by-step explanation:
Something you have to remember with dealing with Triangles is that the three angles will always add up to 180 degrees. so if you have two of the angle already then you can solve for the 3rd one all you have to do is...
add both of the known angles
50 + 75 = 125
Now subtract 180 by 125
180 -125 = 58
Now you have your answer
58 Degrees!!!
LOOK AT PICTURE!!! DO THE QUESTION THAT IS CIRCLED. IF CORRECT 50 POINTS!
Answer:
v = length x width x hight
An airplane flies with a constant speed
of 840 km/h. How far can it travel in
1 hour?
Answer:
840 km
Step-by-step explanation:
The speed expression ...
840 kilometers per hour
means the plane files 840 kilometers in each hour.
In 1 hour, it will travel 840 km.
Evaluate the expression when g=5 and h=33.
h-4g
Answer:145
Step-by-step explanation:
if h=33 and g=5 the expression would look like 33-4x5 frist 33-4=29 so now we imes by 5, 29x5=145 so 145 is your answer