Answer:
a) Initial Temperature = 609.4 K and Final Temperature = 325.7 K
b) the change in internal energy is -18279.78 J
c) heat lost by the gas is zero or 0
d) the work done on the gas is -18279.78 J
Explanation:
Given the data in the question;
P[tex]_i[/tex] = 1 atm = 101325 pascal
P[tex]_f[/tex] = ?
V[tex]_i[/tex] = 0.1550 m³
V[tex]_f[/tex] = 0.742 m³
we know that for an adiabatic process γ = 1.4
P[tex]_i[/tex]V[tex]_i^Y[/tex] = P[tex]_f[/tex]V[tex]_f^Y[/tex]
P[tex]_f[/tex] = P[tex]_i[/tex][tex]([/tex] V[tex]_i[/tex] / V[tex]_f[/tex] [tex])^Y[/tex]
we substitute
P[tex]_f[/tex] = 1 × [tex]([/tex] 0.1550 / 0.742 [tex])^{1.4[/tex]
= [tex]([/tex] 0.2088948787 [tex])^{1.4[/tex]
= 0.11166 atm
a) the initial and final temperatures
Initial temperature
T[tex]_i[/tex] = P[tex]_i[/tex]V[tex]_i[/tex] / nR
given that n = 3.10 mol
= ( 101325 × 0.1550 ) / ( 3.10 × 8.314 )
= 15705.375 / 25.7734
T[tex]_i[/tex] = 609.4 K
Final temperature
T[tex]_f[/tex] = P[tex]_f[/tex]V[tex]_f[/tex] / nR
= ( 0.11166 × 101325 × 0.742 ) / ( 3.10 × 8.314 )
= 8394.95 / 25.7734
= 325.7 K
Therefore, Initial Temperature = 609.4 K and Final Temperature = 325.7 K
b) the change in internal energy
ΔE[tex]_{int[/tex] = nC[tex]_v[/tex]ΔT
here, C[tex]_v[/tex] = ( 5/2 )R
ΔE[tex]_{int[/tex] = 3.10 × ( 5/2 )8.314 × ( 325.7 - 609.4 )
= -18279.78 J
Therefore, the change in internal energy is -18279.78 J
c) the heat lost by the gas
Since its an adiabatic process,
Q = 0
Therefore, heat lost by the gas is zero or 0
d) the work done on the gas
W = ΔE[tex]_{int[/tex] - Q
= -18279.78 J - 0
W = -18279.78 J
Therefore, the work done on the gas is -18279.78 J
a) The Initial Temperature and Final Temperature of gas are 601.68 K and 321.61 K respectively.
b) The change in internal energy is -18279.78 J.
c) The heat lost by the gas is zero.
d) The work done on the gas is -18279.78 J.
Given data:
The moles of sample is, n = 3.10 mol.
The initial volume of sample is, [tex]V_{1}=0.1550 \;\rm m^{3}[/tex].
The final volume of sample is, [tex]V_{2}=0.742 \;\rm m^{3}[/tex].
The initial pressure of the sample is, [tex]P_{1}=1.00 \;\rm atm[/tex].
(a)
We know that the relation between the pressure and volume for an adiabatic process is as follows,
[tex]P_{1}V_{1}^{\gamma} = P_{2}V_{2}^{\gamma}[/tex]
Here, [tex]\gamma[/tex] is a adiabatic index. And for air, its value is 1.41.
Solving as,
[tex]P_{2}=P_{1} \times\dfrac{V_{1}^{\gamma}}{V_{2}^{\gamma}}\\\\\\P_{2}=1.00 \times\dfrac{0.1550^{1.41}}{0.742^{1.41}}\\\\\\P_{2} = 0.11166 \;\rm atm[/tex]
Now, calculate the final temperature using the ideal gas equation as,
[tex]P_{2}V_{2}=nRT_{2}\\\\T_{2}= \dfrac{P_{2} \times V_{2}}{nR}\\\\T_{2}= \dfrac{0.11166 \times 10^{5}\times 0.742}{3.10 \times 8.31}\\\\T_{2}=321.61 \;\rm K[/tex]
Similarly, calculate the initial temperature as,
[tex]P_{1}V_{1}=nRT_{1}\\\\T_{1}= \dfrac{P_{1} \times V_{1}}{nR}\\\\T_{1}= \dfrac{1 \times 10^{5}\times 0.1550}{3.10 \times 8.31}\\\\T_{1}=601.68 \;\rm K[/tex]
Thus, we can conclude that the initial and final temperature of the gas is 601.68 K and 321.61 K respectively.
(b)
The change in internal energy is given as,
ΔE = nCΔT
here, C = ( 5/2 )R
ΔE = 3.10 × ( 5/2 )8.314 × ( 325.7 - 609.4 )
= -18279.78 J
Therefore, the change in internal energy is -18279.78 J.
c)
The heat lost by the gas . Since its an adiabatic process, so there will be no heat interaction.
Q = 0
Therefore, heat lost by the gas is zero or 0
d)
The work done on the gas
W = ΔE - Q
W = -18279.78 J - 0
W = -18279.78 J
Therefore, the work done on the gas is -18279.78 J.
Learn more about the adiabatic process here:
https://brainly.com/question/14930930
A 0.500-kg block slides up a plane inclined at a 30° angle. If it slides 1.50 m before coming to rest while encountering a frictional force of 2 N, find (a) its acceleration, and (b) its initial velocity.
During 57 seconds of use, 330 C of charge flow through a microwave oven. Compute the size of the electric current.
Answer:
5.78amps
Explanation:
Given data
Time t= 57 seconds
Charge Q= 330C
Current I= ??
The expression for the electric current is given as
Q= It
Substituting we have
330= I*57
I= 330/57
I=5.78 amps
Hence the current is 5.78amps
A 70.0-kg person throws a 0.0430-kg snowball forward with a ground speed of 32.0 m/s. A second person, with a mass of 58.5 kg, catches the snowball. Both people are on skates. The first person is initially moving forward with a speed of 3.30 m/s, and the second person is initially at rest. What are the velocities of the two people after the snowball is exchanged
Answer:
The velocities of the skaters are [tex]v_{1} = 3.280\,\frac{m}{s}[/tex] and [tex]v_{2} = 0.024\,\frac{m}{s}[/tex], respectively.
Explanation:
Each skater is not under the influence of external forces during process, so that Principle of Momentum Conservation can be used on each skater:
First skater
[tex]m_{1} \cdot v_{1, o} = m_{1} \cdot v_{1} + m_{b}\cdot v_{b}[/tex] (1)
Second skater
[tex]m_{b}\cdot v_{b} = (m_{2}+m_{b})\cdot v_{2}[/tex] (2)
Where:
[tex]m_{1}[/tex] - Mass of the first skater, in kilograms.
[tex]m_{2}[/tex] - Mass of the second skater, in kilograms.
[tex]v_{1,o}[/tex] - Initial velocity of the first skater, in meters per second.
[tex]v_{1}[/tex] - Final velocity of the first skater, in meters per second.
[tex]v_{b}[/tex] - Launch velocity of the meter, in meters per second.
[tex]v_{2}[/tex] - Final velocity of the second skater, in meters per second.
If we know that [tex]m_{1} = 70\,kg[/tex], [tex]m_{b} = 0.043\,kg[/tex], [tex]v_{b} = 32\,\frac{m}{s}[/tex], [tex]m_{2} = 58.5\,kg[/tex] and [tex]v_{1,o} = 3.30\,\frac{m}{s}[/tex], then the velocities of the two people after the snowball is exchanged is:
By (1):
[tex]m_{1} \cdot v_{1, o} = m_{1} \cdot v_{1} + m_{b}\cdot v_{b}[/tex]
[tex]m_{1}\cdot v_{1,o} - m_{b}\cdot v_{b} = m_{1}\cdot v_{1}[/tex]
[tex]v_{1} = v_{1,o} - \left(\frac{m_{b}}{m_{1}} \right)\cdot v_{b}[/tex]
[tex]v_{1} = 3.30\,\frac{m}{s} - \left(\frac{0.043\,kg}{70\,kg}\right)\cdot \left(32\,\frac{m}{s} \right)[/tex]
[tex]v_{1} = 3.280\,\frac{m}{s}[/tex]
By (2):
[tex]m_{b}\cdot v_{b} = (m_{2}+m_{b})\cdot v_{2}[/tex]
[tex]v_{2} = \frac{m_{b}\cdot v_{b}}{m_{2}+m_{b}}[/tex]
[tex]v_{2} = \frac{(0.043\,kg)\cdot \left(32\,\frac{m}{s} \right)}{58.5\,kg + 0.043\,kg}[/tex]
[tex]v_{2} = 0.024\,\frac{m}{s}[/tex]
A proton is released from rest at the positive plate of a parallel-plate capacitor. It crosses the capacitor and reaches the negative plate with a speed of 54000 m/s. The experiment is repeated with a He+ ion (charge e, mass 4 u).What is the ion's speed at the negative plate?
I need help on this physics problem.
Answer:
the speed of the nerve impulse in miles per hour is 201.59 mi/hr
Explanation:
Given;
the speed of the nerve impulse, v = 90.1 m/s
To convert this speed in meters per second to miles per hour, we use the following method;
1,609 meter = 1 mile
3,600 s = 1 hour
[tex]v(mi/h) = 90.1 \ \frac{m}{s} \times \frac{1 \ mile}{1,609 \ m} \times \frac{3,600 \ s}{1 \ hour} = (\frac{90.1 \times 3,600}{1,609} )\frac{mi}{hr} = 201.59 \ mi/hr[/tex]
Therefore, the speed of the nerve impulse in miles per hour is 201.59 mi/hr
Why does a compass give unreliable readings when used near electrical appliances
Answer:
Explanation:
Since the compass uses a magnetic field, if anything else magnetic is near it, the compass will start acting up. Making it unreliable so keep magnets away!
Shooting a rock with a slingshot converts
energy to__________,
energy____________,
Answer:
converts elastic energy to mechanical energy
Explanation:
Helium gas at 20 °C is confined within a rigid vessel. The gas is then heated until its pressure is doubled. What is the final temperature of the gas?
Answer:
586 K
Explanation:
Let P is the initial pressure.
Initial temperature, T₁ = 20°C = 293 K
Final pressure, P₂ = 2P
We need to find the final temperature of the gas.
The relation between the pressure and the temperature is as follows
[tex]P\propto T\\\\or\\\\\dfrac{P_1}{P_2}=\dfrac{T_1}{T_2}[/tex]
Put all the values,
[tex]\dfrac{P}{2P}=\dfrac{293}{T_2}\\\\\dfrac{1}{2}=\dfrac{293}{T_2}\\\\T_2=2\times 293\\\\T_2=586\ K[/tex]
So, the final temperature of the gas is 586 K.
In 2009 Usain Bolt set the world record time by running 100 meters in 9.58 s. Assume that during this race he ran in a straight line with constant acceleration a. What would be the required constant acceleration a
In 2009 Usain Bolt set the world record time by running 100 meters in 9.58 seconds, assuming that he ran this race with constant acceleration, then the required constant acceleration would have been
What are the three equations of motion?There are three equations of motion given by Newton
v = u + at
S = ut + 1/2×a×t²
v² - u² = 2×a×s
By using the second equation of motion given by Newton,
S = ut + 1/2at²
100= 0 + 0.5*a*9.58²
a = 2.17 meters / second²
Thus,the required constant acceleration of Usain Bolt would have been 2.17 meters / second².
To learn more about equations of motion here, refer to the link;
brainly.com/question/5955789
#SPJ2
What best describes a societal law
Answer:
Societal laws are based on the behavior and conduct made by society or government.hope it helps.stay safe healthy and happy.~~~~NEED HELP ASAP~~~~
Block A slides into block B along a frictionless surface. They are moving in the direction from left o the right.
Block A= 3kg
Block B= 4kg
Block A velocity before collision =30m/s.
Block B velocity before collision = 15 m/s
The velocity of block B after the collision is 20m/s.
a.) What is the velocity of block A after collision?
b.) Is the collision elastic? Show work to explain answer why or why not.
Answer:
Block A velocity is 23.33 m/s and the collission is not elastic.
Explanation:
a) m1v1 + m2v2 = m1v1' + m2v2'
Plug in givens
90+60=3v1'+80
solve for v1'= 23.33m/s
b) Find the initial and final kinetic energy of Block B
Ki= 1/2(4)(15)^2 + 1/2(3)(30)^2 = 1800 J
Kf= 1/2(4)(20)^2 + 1/2(3)*(23.33)^2= 1616.433J
Since Ki does not equal Kf the collision is not elastic
Gradual shifting or movement of a time series to relatively higher or lower values over a longer period of time is called _____.
Answer:
Gradual shifting of a time series to relatively higher or lower values over a long period of time is called a Trend.
why kg is a fundamental unit?
This above answer helps a lot.
collisions may take place between
Answer:
Collisions may take place between the reactants.
Explanation:
The collision frequency must be greater than the frequency factor for the reaction. A collision between the reactants must occur.
water contracts on freezing is it incorrect or conrrect
Answer:
hope it helps
much as you can
A cylindrical container with a cross sectional area of 65.2 cm^2 holds a fluid of density 806 kg/m^3. At the bottom of the container the pressure is 116 kPa.
(a) What is the depth of the fluid?
(b) Find the pressure at the bottom of the container after an additional 2.05 X 10^-3 m^3 of this fluid is added to the container. Assume that no fluid spills out of the container.
How do you find the product of gamma decay?
Answer:
The mass and atomic numbers don't change
Explanation:
An excited atom relaxes to the ground state emitting a photon...called a gamma ray.
The answer is that the mass and atomic numbers don't change.
In gamma decay, the product refers to the nucleus resulting from the emission of a gamma ray. Gamma decay occurs when an excited atomic nucleus releases excess energy in the form of a high-energy photon called a gamma ray.
To find the product of gamma decay, you need to identify the nucleus before and after the decay process. The product nucleus is determined by the parent nucleus that undergoes gamma decay.
During gamma decay, the number of protons and neutrons in the nucleus remains unchanged. Therefore, the identity of the element remains the same, but the energy state of the nucleus is altered.
The product nucleus is typically represented by the same chemical symbol as the parent nucleus, followed by a superscript indicating the mass number (total number of protons and neutrons) and a subscript indicating the atomic number (number of protons).
For example, if a parent nucleus with an atomic number of Z and a mass number of A undergoes gamma decay, the product nucleus will have the same atomic number Z and mass number A.
It's important to note that gamma decay does not involve the emission or absorption of any particles, only the release of electromagnetic radiation (gamma ray).
Thus, the product nucleus remains unchanged in terms of atomic number and mass number.
Know more about gamma decay:
https://brainly.com/question/16039775
#SPJ4
190 students sit in an auditorium listening to a physics lecture. Because they are thinking hard, each is using 125 W of metabolic power, slightly more than they would use at rest. An air conditioner with a COP of 5.0 is being used to keep the room at a constant temperature. What minimum electric power must be used to operate the air conditioner?
Answer:
W = 4.75 KW
Explanation:
First, we will calculate the heat to be removed:
Q = (No. of students)(Metabolic Power of Each Student)
Q = (190)(125 W)
Q = 23750 W = 23.75 KW
Now the formula of COP is:
[tex]COP = \frac{Q}{W}\\\\W = \frac{Q}{COP}\\\\W = \frac{23.75\ KW}{5}\\\\[/tex]
W = 4.75 KW
Magnetic field lines begin at the _?_ pole of a magnet and end at the _?_ pole
As it pulls itself up to a branch, a chimpanzee accelerates upward at 2.4 m/s2 at the instant it exerts a 260-N force downward on the branch.Find the magnitude of the force the chimpanzee exerts on the Earth.
Answer:
[tex]F=208.83N[/tex]
Explanation:
From the question we are told that:
Acceleration [tex]a=2.4m/s^2[/tex]
Force of Branch [tex]F=260N[/tex]
Generally the Newton's equation second law for Force is mathematically given by
[tex]ma=F-mg[/tex]
[tex]m=\frac{260}{2.4+9.8}[/tex]
[tex]m=21.31kg[/tex]
Therefore
[tex]F=mg[/tex]
[tex]F=(21.31)(9.8)[/tex]
[tex]F=208.83N[/tex]
If you and a friend are standing side-by-side watching a soccer game, would you both view the motion from the same reference frame?
a. Yes, we would both view the motion from the same reference point because both of us are at rest in Earth’s frame of reference.
b. Yes, we would both view the motion from the same reference point because both of us are observing the motion from two points on the same straight line.
c. No, we would both view the motion from different reference points because motion is viewed from two different points; the reference frames are similar but not the same.
d. No, we would both view the motion from different reference points because response times may be different; so, the motion observed by both of us would be different.
Answer:
the correct is C
Explanation:
The concept of a frame of reference is of crucial importance in physics, because it is the system from which measurements are made. Therefore, the relationships between the different reference frames must be clear so that the measurements made can be compared correctly.
In this case, the first observed sees the movement of the ball, suppose it moves a distance r, the second observed is next to me, separated by a distance x, therefore a frame of reference located in the movement of the ball. ball r '.
Consequently, the measurement carried out is related by
r = r’ + x
where the bold letters indicate wind blowers.
With these explanations we review the different answers, the correct one is C
A tire is filled with air at 22oC to a gauge pressure of 240 kPa. After driving for some time, if the temperature of air inside the tire is 45oC, what fraction of the original volume of air must be removed to maintain the pressure at 240 kPa?
Answer:
7.8% of the original volume.
Explanation:
From the given information:
Temperature [tex]T_1[/tex] = 22° C = 273 + 22 = 295° C
Pressure [tex]P_1[/tex] = 240 kPa
Temperature [tex]T_2[/tex] = 45° C
At initial temperature and pressure:
Using the ideal gas equation:
[tex]P_1V_1 =nRT_1[/tex]
making V_1 (initial volume) the subject:
[tex]V_1 = \dfrac{nRT_1}{P_1}[/tex]
[tex]V_1 = \dfrac{nR*295}{240}[/tex]
Provided the pressure maintained its rate at 240 kPa, when the temperature reached 45° C, then:
the final volume [tex]V_2[/tex] can be computed as:
[tex]V_2 = \dfrac{nR*318}{240}[/tex]
Now, the change in the volume ΔV = V₂ - V₁
[tex]\Delta V = \dfrac{nR*318}{240}- \dfrac{nR*295}{240}[/tex]
[tex]\Delta V = \dfrac{23nR}{240}[/tex]
∴
The required fraction of the volume of air to keep up the pressure at (240) kPa can be computed as:
[tex]= \dfrac{\dfrac{23nR}{240}}{ \dfrac{295nR}{240}}[/tex]
[tex]= {\dfrac{23nR}{240}} \times { \dfrac{240}{295nR}}[/tex]
[tex]= 0.078[/tex]
= 7.8% of the original volume.
The value of mass remains constant but weight changes place to place why
Explanation:
No matter where you are in the universe, your mass is always the same: mass is a measure of the amount of matter which makes up an object. Weight, however, changes because it is a measure of the force between an object and body on which an object resides (whether that body is the Earth, the Moon, Mars, et cetera).
Explanation:
Hence, weight of a body will change from one place to another place because the value of g is different in different places. For example, the value of g on moon is 1/6 times of the value of g on earth. As mass is independent of g , so it will not change from place to place.
A system gains 1500J of heat and 2200J of work is done by the system on its surroundings. Determine the change in internal energy of the system
Answer:
-700
formula is heat gained - work done
The change in internal energy if A system gains 1500J of heat and 2200J of work is done by the system on its surroundings, is 700 joules.
What is Energy?Energy is the ability to perform work in physics. It could exist in several different forms, such as potential, kinetic, thermal, electrical, chemical, radioactive, etc.
Additionally, there is heat and work, which is energy being transferred from one body to another. Energy is always assigned based on its nature once it has been transmitted. Thus, heat transmitted may manifest as thermal energy while work performed may result in mechanical energy.
Given:
A system gains 1500J of heat and 2200J of work is done by the system on its surroundings,
Calculate the change in internal energy as shown below,
The change in internal energy = heat gained - work done
The change in internal energy = 1500 - 2200
The change in internal energy = -700 J
Thus, the change in internal energy is 700 joules.
To know more about Energy:
https://brainly.com/question/8630757
#SPJ5
A cylindrical specimen of aluminum having a diameter of 0.505 in. (12.8 mm) and a gauge length of 2.0 in. (50.8 mm) is pulled in tension. Use the load-elongation characteristics tabulated below to complete parts (a) through (f).
a. Plot the data as engineering stress versus engineering strain.
b. Compute the modulus of elasticity.
c. Determine the yield strength at a strain offset of 0.002.
d. Determine the tensile strength of this alloy.
e. What is the approximate ductility, in percent elongation?
f. Compute the strain energy density up to yielding (modulus of resilience).
( Load in N Load in lb Length in mm Length in in. 2.000 2.002 2.004 2.006 2.008 2.010 2.020 2.040 2.080 2.120 2.160 2.200 2.240 2.270 2.300 2.330 Fracture 50.800 7330 15,100 3400 23,100 5200 30,400 6850 34,400 7750 38,400 8650 41,3009300 44,800 10,100 46,200 10,400 53, 47,300 10,650 54.864 47,500 10,700 55.880 46,100 10,400 44,800 10,100 42,600 9600 3,400 8200 Fracture Fracture Fracture 50.851 50.902 50.952 51.003 51.054 1650 51.308 51.816 52.832 848 56.896 57.658 58.420 59.182
Answer:
A cylindrical specimen of aluminum having a diameter of 0.505 in. (12.8 mm) and a gauge length of 2.0 in. (50.8 mm) is pulled in tension. Use the load-elongation characteristics tabulated below to complete parts (a) through (f).
Upon completing an interview, it is important that you send a follow-up thank you
note/letter/e-mail because it will show that you are a person who appreciates an opportunity.
A True
B
False
In a television set the power needed to operate the picture tube comes from the secondary of a transformer. The primary of the transformer is connected to a 120-V receptacle on a wall. The picture tube of the television set uses 76 W, and there is 5.5 mA of current in the secondary coil of the transformer to which the tube is connected. Find the turns ratio Ns/Np of the transformer.
Ns/Np = ______.
Answer:
c) N_s / N_p = 115.15
Explanation:
Let's look for the voltage in the secondary, they do not indicate the power dissipated
P = V_s i
V_s = P / i
V_s = 76 / 5.5 10⁻³
V_s = 13.818 10³ V
the relationship between the primary and secondary of a transformer is
[tex]\frac{V_p}{N_p} = \frac{V_s}{N_s}[/tex]
[tex]\frac{N_s}{N_p} = \frac{V_s}{V_p}[/tex]
Ns / Np = 13,818 10³ /120
N_s / N_p = 115.15
suppose a car of 1200kg is moving with a velocity of 40km/hr therefore its kinetic energy is not zero. 1. explain briefly what happens to its kinetic energy when the driver applies the breaks and the car stops
Answer:
Explanation:
For starters begin with a warning not to touch the brake drums. All of the KE is transferred to the brake drums. The result is a large rise in temperature. Heat. If you press hard on the brakes, rubber is left on the road and there is heat involved in that too.
Answer:
KInetic energy reduces.
Explanation:
Application of breaks reduces velocity. Reduction of velocity constitutes velocity reduction.
For more help contact +1 (304) 223-3136
Explain whether the unit of work is a fundamental or derived unit
Answer:
answer here
Explanation:
the unit of work is fundamental unit because it doesn't depend on other units.
__________________
Thx
Answer:
The SI unit of work is joule (J)
Explanation:
Joule is a derived unit. ∴ unit of work is a derived unit
A 10-cm-long spring is attached to the ceiling. When a 2.0 kg mass is hung from it, the spring stretches to a length of 15 cm.What is the spring constant k?How long is the spring when a 4.0 kg mass is suspended from it?
As the spring is stretched, it exerts an upward restoring force f. At maximum extension, Newton's second law gives
∑ F = f - mg = 0 ==> f = (2.0 kg) (9.8 m/s²) = 19.6 N
By Hooke's law, if k is the spring constant, then
f = kx ==> k = f/x = (19.6 N) / (0.15 m) ≈ 130 N/m
A 4.0 kg mass would cause the spring to exert a force of
f = (4.0 kg) (9.8 m/s²) = 39.2 N
which would result in the spring stretching a distance x such that
39.2 N = (130 N/m) x ==> x = (39.2 N) / (130 N/m) ≈ 0.30 m ≈ 30 cm