A 11 L solution that was 25 % vinegar was mixed with a 12 L solution that was 67 % vinegar. Find the new concentration of vinegar.

Answers

Answer 1

Answer:

46.91%

Step-by-step explanation:

The first solution contains 11 * 0.25 = 2.75 L of vinegar

The second solution contains 12 * 0.67 = 8.04 L of vinegar

When mixed together, that adds up to 8.04 + 2.75 = 10.79 L of vinegar

The total volume of the combined solutions is 11 + 12 = 23 L of solution

So the new concentration is 10.79/23 ≈ 0.4691 ≈ 46.91%


Related Questions

4.1 by the power of 2

Answers

Answer:

16.81

Step-by-step explanation:

That's basically just 4.1×4.1

can someone help me pls?

Answers

Answer:

decreasing:   (-2, -1)∪(-1, 0)

Step-by-step explanation:

From  x = -2 to x = 0 function is decreasing, but for x= -1 function doesn't exist, so we need to exclude x = -1 from (-2, 0)

if sina=4/5 find the cosa

Answers

Answer:

cos A = 3/5

Step-by-step explanation:

sin A = 4/5

sin^2 A + cos^2 A = 1

(4/5)^2 + cos^2 A = 1

16/25 + cos^2 A = 1

cos^2 A = 9/25

cos A = 3/5

Which expression is equal to (2 – 5i) – (3 + 4i)?
O1 – 9i
0-1 – 9i
05 -
0 -1- i

Answers

Answer:

-1-9i (the second option)

Step-by-step explanation:

(2 – 5i) – (3 + 4i)

=2-5i-3-4i

= -1-9i

-1 – 9i this expression is equal to (2 – 5i) – (3 + 4i).

so, 2nd option is correct.

Here, we have,

To simplify the expression (2 – 5i) – (3 + 4i),

we need to perform the subtraction operation for both the real and imaginary parts separately.

The real part subtraction is done as follows: 2 - 3 = -1.

The imaginary part subtraction is done as follows: -5i - 4i = -9i.

Combining the real and imaginary parts, we get -1 - 9i.

Therefore, the expression (2 – 5i) – (3 + 4i) is equal to -1 - 9i.

Among the given options, the expression that matches this result is O-1 - 9i.

Hence, -1 – 9i this expression is equal to (2 – 5i) – (3 + 4i).

so, 2nd option is correct.

To learn more on subtraction click:

brainly.com/question/2346316

#SPJ2

the diagram shows a sector of a circle, center O,radius 5r the length of the arc AB 4r. find the area of the sector in terms of r , giving your answer in its simplest form​

Answers

Answer:

10r²

Step-by-step explanation:

The following data were obtained from the question:

Radius (r) = 5r

Length of arc (L) = 4r

Area of sector (A) =?

Next, we shall determine the angle θ sustained at the centre.

Recall:

Length of arc (L) = θ/360 × 2πr

With the above formula, we shall determine the angle θ sustained at the centre as follow:

Radius (r) = 5r

Length of arc (L) = 4r

Angle at the centre θ =?

L= θ/360 × 2πr

4r = θ/360 × 2π × 5r

4r = (θ × 10πr)/360

Cross multiply

θ × 10πr = 4r × 360

Divide both side by 10πr

θ = (4r × 360) /10πr

θ = 144/π

Finally, we shall determine the area of the sector as follow:

Angle at the centre θ = 144/π

Radius (r) = 5r

Area of sector (A) =?

Area of sector (A) = θ/360 × πr²

A = (144/π)/360 × π(5r)²

A = 144/360π × π × 25r²

A = 144/360 × 25r²

A = 0.4 × 25r²

A = 10r²

Therefore, the area of the sector is 10r².

the area of the sector in terms of r is [tex]10r^2[/tex]

Given :

From the given diagram , the radius of the circle is 5r  and length of arc AB is 4r

Lets find out the central angle using length of arc formula

length of arc =[tex]\frac{central-angle}{360} \cdot 2\pi r[/tex]

r=5r  and length = 4r

[tex]4r=\frac{central-angle}{360} \cdot 2\pi (5r)\\4r \cdot 360=central-angle \cdot 2\pi (5r)\\\\\\\frac{4r \cdot 360}{10\pi r} =angle\\angle =\frac{4\cdot 36}{\pi } \\angle =\frac{144}{\pi }[/tex]

Now we replace this angle in area of sector formula

Area of sector =[tex]\frac{angle}{360} \cdot \pi r^2\\[/tex]

[tex]Area =\frac{angle}{360} \cdot \pi r^2\\\\Area =\frac{\frac{144}{\pi } }{360} \cdot \pi\cdot 25r^2\\\\Area =\frac{ 144 }{360\pi } \cdot \pi\cdot 25r^2\\\\Area =\frac{ 2 }{5 } \cdot 25r^2\\\\\\Area=10r^2[/tex]

So, the area of the sector in terms of r is [tex]10r^2[/tex]

Learn more : brainly.com/question/23580175

−3 3/8−7/8 what is it

Answers

Greetings from Brasil...

First, let's make the mixed fraction improper:

- (3 3/8)

- { [(8 · 3) + 3]/8}

- { [24 + 3]/8}

- {27/8}

- (3 3/8) - (7/8)

- (27/8) - (7/8)

as the denominators are equal, we operate only with the numerators

- 34/8      simplifying

- 17/4

Answer:

-  4 ¹/₄

Step-by-step explanation:

-3 3/8 - 7/8

convert -3 3/8 to improper fractions

_   27   _   7

    8            8

_   27 - 7

       8      

simplify

_   34

     8

convert to proper factions

_   17

     4

-  4 ¹/₄

What is the result of the product of 21 and x added to twice of 6?​

Answers

Answer:

21x + 12

Step-by-step explanation:

In math, it is

21x + 2(6).

so we have

21x + 2(6) = 21x + 12.

Find em when em = 7x and the midpoint is m and mg = 8x-6

Answers

Answer:

EM = 42

Step-by-step explanation:

If M is the midpoint, then we can say that EM = MG.

So now, I can set up an equation:

7x = 8x - 6

And solve for x.

7x = 8x - 6

 -8x     -8x

-x = -6

x = 6

Since we are trying to find EM, and EM is 7x, we can multiply x by 7 to find our answer:

7x

7(6)

42

EM = 42

Help! I need to solve #17 and the Challenge! The first one to answer, ill will mark as brainliest!

Answers

Answer:

16) Anya, Danny, Bridget, Carl.

17) 217.66 bricks

Challenge) 275.65 minutes

Step-by-step explanation:

16) I think you have Anya and Danny reversed.  It should be:

Anya, Danny, Bridget, Carl.

17) Bridget can do 60 an hour, Danny 50 an hour, Carl 66 an hour, and Anya 41.66 an hour.  60+50+66+41.66=217.66

Challenge: Anya can do .694444 per minute, Bridget 1 per minute, Carl 1.1 per minute, and Danny .83333 per minute.  That makes 3.62777 per minute.  1000 divided by 3.6277777 is 275.65 minutes

Rewrite 7.13 as a mixed number in lowest terms

Answers

Hey there! I'm happy to help!

A mixed number is a whole number and a fraction. We already see that our whole number is 7.

Our decimal is 0.13. Since this goes into the hundredths place, we can rewrite this as 13/100. This cannot be simplified anymore.

Therefore, 7.13 is 7 13/100 in lowest terms.

Have a wonderful day! :D

A city has a population of people. Suppose that each year the population grows by . What will the population be after years?

Answers

Answer:

The question is missing the values, I found a possible matching question:

a city has a population of 380,000 people. suppose that each year the population grows by 7.5%. what will be the population after 6 years

Answer:

After 6 years, the population will be 586, 455 people

Step-by-step explanation:

This growth is similar to the growth of an invested amount of money, which is compounded annually, yielding a future value, when it increases by a certain interest rate. Hence the formula for compound interest is used to determine the population after 6 years as follows:

[tex]FV = PV (1+ \frac{r}{n})^({n \times t})[/tex]

where

FV = future value = population after 6 years = ???

PV = present value = current  population = 380,000 people

r = interest rate = growth rate = 7.5% = 7.5/100 = 0.075

n = number of compounding periods per year = annually = 1

t = time of growth = 6 years

[tex]FV = 380,000 (1+ \frac{0.075}{1})^({1 \times 6})\\FV = 380,000 (1.075)^{6}\\FV= 380,000 (1.5433015256)\\FV = 586,454.58\\FV= 586,455\ people[/tex]

Therefore, after 6 years, the population will be 586, 455 people

solve ; 7/x-3/2x+7/6=9/x

Answers

Answer:

x = 3

Step-by-step explanation:

7/x - 3/(2x) + 7/6 = 9/x

x(7/x  - 3/(2x)  + 7/6) = x(9x)

x*7/x  - 3*x/(2x) + x*7/6 = x*9x

7 - 3/2 + 7x/6 = 9

7x/6 = 9 - 7 + 3/2

7x/6 = 2 + 3/2

7x/6 = 12/6 + 9/6

7x = 12+9

7x = 21

x = 21/7

x = 3

probe:

7/3 - 3/(2*3) + 7/6 = 9/3

14/6 - 3/6 + 7/6 = 3

(14 - 3 + 7) / 6 = 3

18/6 = 3

what is the LCM for 3 and 8

Answers

Answer: The LCM of 3 and 8 is 24.

Step-by-step explanation:

So far, the given two numbers are 3 and 8. We have to find the LCM ( Least Common Multiple ) of 3 and 8, not the GCF ( Greatest Common Factor). That means, we have to find the smallest multiple of 3 and 8.

Let's try it out.

3 times 1 = 3. Is that a multiple of eight? No.

3 times 2 = 6. Is that a multiple of eight? No.

3 times 3 = 9. Is that a multiple of eight? No.

3 times 4 = 12. Is that a multiple of eight? No.

3 times 5 = 15. Is that a multiple of eight? No.

3 times 6 = 18. Is that a multiple of eight? No.

3 times 7 = 21. Is that a multiple of eight? No.

3 times 8 = 24. Is that a multiple of eight? YES!

Now try it out for 8.

8 times 1 = 8. Is that a multiple of three? No.

8 times 2 = 16. Is that a multiple of three? No.

8 times 3 = 24. Is that a multiple of three? YES!

So now that 24 occurs in the list for both of them, it is the LCM because there are no other numbers that come before it that are multiples of both 3 and 8.

The LCM of 3 and 8 is 24.

What is the LCM for 3 and 8?

The LCM (Least Common Multiple) of two numbers is the smallest number that is a multiple of both numbers.

To find the LCM of 3 and 8, we can use the following steps:

1. List out the multiples of 3 until we reach a number that is divisible by 8.

2. List out the multiples of 8 until we reach a number that is divisible by 3.

3. The smallest number that appears in both lists is the LCM of 3 and 8.

The multiples of 3 are 3, 6, 9, 12, 15, 18, 21, 24, 27...

The multiples of 8 are 8, 16, 24, 32 ...

The smallest number that appears in both lists is 24. Therefore, the LCM of 3 and 8 is 24.

Learn more about LCM on:

https://brainly.com/question/29231098

#SPJ6

The quantities xxx and yyy are proportional. xxx yyy 111111 1\dfrac{2}{9}1 9 2 ​ 1, start fraction, 2, divided by, 9, end fraction 212121 2\dfrac{1}{3}2 3 1 ​ 2, start fraction, 1, divided by, 3, end fraction 454545 555

Answers

Answer:

The constant of proportionality is 1/9

Answer:

The answer is actually 3

Step-by-step explanation:

The two triangles are drawn to scale, so we can use the scale factor of \maroonD{1\dfrac{1}{2}}1

2

1

start color #ca337c, 1, start fraction, 1, divided by, 2, end fraction, end color #ca337c to find \greenD{x}xstart color #1fab54, x, end color #1fab54.

Hint #22 / 3

\begin{aligned} [\blueD{\text{length on A}}] \cdot [\maroonD{\text{scale factor}}] &= [\greenD{\text{length on B}}]\\\\ \blueD{2}\cdot \maroonD{1\dfrac{1}{2}}&=\greenD{x} \\\\ \greenD{3}&=\greenD{x} \end{aligned}

[length on A]⋅[scale factor]

2⋅1

2

1

3

 

=[length on B]

=x

=x

which equals 3

Question 27 (1 point)
(01.05)
What is the slope-intercept form equation of the line that passes through (1,3) and (3, 7)? (1 point)

а. y = -2x + 1

b. y=-2x - 1

с. y = 2x + 1

d. y= 2x - 1

Answers

Answer: y=2x+1

Step-by-step explanation:

plug in the points in to the equation to see what you get

What is the pattern between these numbers 8,7,5,2

Answers

it subtracts 1 then 2 then 3

Explain a situation when the absolute value of a number might be negative. Explain using examples, relevant details, and supporting evidence. RACE Format Its for a CRQ

Answers

The absolute value of any number is never negative. Absolute value represents distance, and negative distance is not possible (it doesn't make any sense to have a negative distance). Specifically, it is the distance from the given number to 0 on the number line.

The result of an absolute value is either 0 or positive.

Examples:

| -22 | = 22

| -1.7 | = 1.7

| 35 | = 35

The vertical bars surrounding the numbers are absolute value bars

the volume of a cylinder is 308 cm cube with radius 7 cm find the height​

Answers

Formula :-

Volume of cylinder is π r²h .

Given :-

→ Volume = 308 cm³

→ Radius = 7 cm

Solution :-

→ πr²h = 308

→ π (7)²(h) = 308

→ 22×7×7×h/7 = 308

→ 22×7×h = 308

→ 154×h = 308

→ Height = 308/154

→ Height = 2 cm

So the height of the cylinder is 2 cm .

divide the sum of 3/8 and -5/12 by the reciprocal of -15/8×16/27​

Answers

Answer:

757

Step-by-step explanation:

Answer:

Step-by-step explanation:

Sum of 3/8 and -5/12:

Least common denominator of 8 & 12 = 24

[tex]\frac{3}{8}+\frac{-5}{12}=\frac{3*3}{8*3}+\frac{-5*2}{12*2}\\\\\\=\frac{9}{24}+\frac{-10}{24}\\\\\\=\frac{-1}{24}[/tex]

Finding -15/8 * 16/27:

[tex]\frac{-15}{8}*\frac{16}{27}=\frac{-5*2}{1*9}=\frac{-10}{9}[/tex]  

Reciprocal of -10/9 = -9/10

-1/24 ÷ -9/10 = [tex]\frac{-1}{24}*\frac{-10}{9}=\frac{1*5}{12*3}[/tex]

= [tex]\frac{5}{24}[/tex]

Who drove faster?
Dan drives 60 miles in 5 hours.
David drives 75 miles in 6 hours.

Answers

Answer:

david drove faster than dan bcz

Answer:

David drove faster

Step-by-step explanation:

Dan - 60m/5h = 12 miles an hour

David - 75m/6h = 12.5 miles an hour

Therefore David drove faster.

What is the product? Five-twelfths times one-third

Answers

When you multiply two fractions together, multiply the two top numbers and then multiply the two bottom numbers.

5/12 x 1/3 = (5x1) / (12x3) = 5/36

Answer:

Step-by-step explanation:

[tex]\frac{5}{12}*\frac{1}{3}\\\\\\=\frac{5*1}{12*3}=\frac{5}{36}[/tex]

Help. What does 4^5×4^7=

Answers

4 ^12 because if you’re multiplying powers you just add the power number

[tex]4^5\cdot4^7=4^{5+7}=16,777,216[/tex].

Hope this helps.

Select the correct answer from each drop-down menu. Shape I is similar to shape II. The sequence that maps shape I onto shape II is a 180degree clockwise rotation about the origin, and then a dilation by a scale factor of (0.5; 1; 1.5 ; or 2)

Answers

Answer:

Scale factor 2.

Step-by-step explanation:

The vertices of shape I are (2,1), (3,1), (4,3), (3,3), (3,2), (2,2), (2,3), (1,3).

The vertices of shape II are (-4,-2), (-6,-2), (-8,-6), (-6,-6), (-6,-4), (-4,-4), (-4,-6), (-2,-6).

Consider shape I is similar to shape II. The sequence that maps shape I onto shape II is a 180 degree clockwise rotation about the origin, and then a dilation by a scale factor of k.

Rule of 180 degree clockwise rotation about the origin:

[tex](x,y)\rightarrow (-x,-y)[/tex]

The vertices of shape I after rotation are (-2,-1), (-3,-1), (-4,-3), (-3,-3), (-3,-2), (-2,-2), (-2,-3), (-1,-3).

Rule of dilation by a scale factor of k.

[tex](x,y)\rightarrow (kx,ky)[/tex]

So,

[tex](-2,-1)\rightarrow (k(-2),k(-1))=(-2k,-k)[/tex]

We know that, the image of (-2,-1) after dilation is (-4,-2). So,

[tex](-2k,-k)=(-4,-2)[/tex]

On comparing both sides, we get

[tex]-2k=-4[/tex]

[tex]k=2[/tex]

Therefore, the scale factor is 2.

Answer:

180 clockwise rotation about the orgin, 2

Step-by-step explanation:

what is the square root of 80 simplified to?

Answers

Answer:

4√5

Step-by-step explanation:

√80 = √4·4·5 = √4²·5 = 4√5

Imagine these are your students' test scores (out of 100): 63, 66, 70, 81, 81, 92, 92, 93, 94, 94, 95, 95, 95, 96, 97, 98, 98, 99, 100, 100, 100. What can you conclude regarding their distribution? (HINT: The mean is ~ 90; The median = 95)

Answers

Answer:

The mean ≈ 90

The median = 95

The mode = 95 & 100

The range = 37

Step-by-step explanation:

We will base out conclusion by calculating the measures of central tendency of the distribution i.e the mean, median, mode and range.

– Mean is the average of the numbers. It is the total sum of the numbers divided by the total number of students.

xbar = Sum Xi/N

Xi is the individual student score

SumXi = 63+66+70+81+81+92+92+93+94+94+95+95+95+96+97+98+98+99+100+100+100

SumXi = 1899

N = 21

xbar = 1899/21

xbar = 90.4

xbar ≈ 90

Hence the mean of the distribution is approximately equal to 90.

– Median is number at the middle of the dataset after rearrangement.

We need to locate the (N+1/2)the value of the dataset.

Given N =21

Median = (21+1)/2

Median = 22/2

Median = 11th

Thus means that the median value falls on the 11th number in the dataset.

Median value = 95.

Note that the data set has already been arranged in ascending order so no need of further rearrangement.

– Mode of the data is the value occurring the most in the data. The value with the highest frequency.

According to the data, it can be seen that the value that occur the most are 95 and 100 (They both occur 3times). Hence the modal value of the dataset are 95 and 100

– Range of the dataset will be the difference between the highest value and the lowest value in the dataset.

Highest score = 100

Lowest score = 63

Range = 100-63

Range = 37

In predicate calculus, arguments to predicates and functions can only be terms - that is, combinations of __. Select one: a. predicates and connectives b. constants and predicates c. variables, constants, and functions d. predicates, quantifiers, and connectives

Answers

Answer:

c. variables, constants, and functions

Step-by-step explanation:

A predicate is the property that some object posses. Predicate calculus is a kind of logic that combines the categorical logic with propositional logic. The formal syntax of a predicate calculus contains 3 Terms which consist  of:

1.  Constants and Variables

2. Connectives

3. Quantifiers

But in arguments to predicates and functions, the terms  can only be combination of variables, constants, and functions.

1) Determine the discriminant of the 2nd degree equation below:

3x 2 − 2x − 1 = 0
a = 3, b = −2, c = −1
Discriminant → ∆= b 2 − 4 a c


2) Solve the following 2nd degree equations using Bháskara's formula:

Δ = b² - 4.a.c
x = - b ± √Δ
__________
2a

a) x 2 + 5x + 6 = 0

b)x 2 + 2x + 1 = 0

c) x2 - x - 20 = 0

d) x2 - 3x -4 = 0

Answers

[tex] \LARGE{ \boxed{ \mathbb{ \color{purple}{SOLUTION:}}}}[/tex]

We have, Discriminant formula for finding roots:

[tex] \large{ \boxed{ \rm{x = \frac{ - b \pm \: \sqrt{ {b}^{2} - 4ac} }{2a} }}}[/tex]

Here,

x is the root of the equation.a is the coefficient of x^2b is the coefficient of xc is the constant term

1) Given,

3x^2 - 2x - 1

Finding the discriminant,

➝ D = b^2 - 4ac

➝ D = (-2)^2 - 4 × 3 × (-1)

➝ D = 4 - (-12)

➝ D = 4 + 12

➝ D = 16

2) Solving by using Bhaskar formula,

❒ p(x) = x^2 + 5x + 6 = 0

[tex] \large{ \rm{ \longrightarrow \: x = \dfrac{ - 5\pm \sqrt{( - 5) {}^{2} - 4 \times 1 \times 6 }} {2 \times 1}}}[/tex]

[tex]\large{ \rm{ \longrightarrow \: x = \dfrac{ - 5 \pm \sqrt{25 - 24} }{2 \times 1} }}[/tex]

[tex] \large{ \rm{ \longrightarrow \: x = \dfrac{ - 5 \pm 1}{2} }}[/tex]

So here,

[tex]\large{\boxed{ \rm{ \longrightarrow \: x = - 2 \: or - 3}}}[/tex]

❒ p(x) = x^2 + 2x + 1 = 0

[tex]\large{ \rm{ \longrightarrow \: x = \dfrac{ - 2 \pm \sqrt{ {2}^{2} - 4 \times 1 \times 1} }{2 \times 1} }}[/tex]

[tex]\large{ \rm{ \longrightarrow \: x = \dfrac{ - 2 \pm \sqrt{4 - 4} }{2} }}[/tex]

[tex]\large{ \rm{ \longrightarrow \: x = \dfrac{ - 2 \pm 0}{2} }}[/tex]

So here,

[tex]\large{\boxed{ \rm{ \longrightarrow \: x = - 1 \: or \: - 1}}}[/tex]

❒ p(x) = x^2 - x - 20 = 0

[tex]\large{ \rm{ \longrightarrow \: x = \dfrac{ - ( - 1) \pm \sqrt{( - 1) {}^{2} - 4 \times 1 \times ( - 20) } }{2 \times 1} }}[/tex]

[tex]\large{ \rm{ \longrightarrow \: x = \dfrac{ 1 \pm \sqrt{1 + 80} }{2} }}[/tex]

[tex]\large{ \rm{ \longrightarrow \: x = \dfrac{1 \pm 9}{2} }}[/tex]

So here,

[tex]\large{\boxed{ \rm{ \longrightarrow \: x = 5 \: or \: - 4}}}[/tex]

❒ p(x) = x^2 - 3x - 4 = 0

[tex]\large{ \rm{ \longrightarrow \: x = \dfrac{ - ( - 3) \pm \sqrt{( - 3) {}^{2} - 4 \times 1 \times ( - 4) } }{2 \times 1} }}[/tex]

[tex]\large{ \rm{ \longrightarrow \: x = \dfrac{3 \pm \sqrt{9 + 16} }{2 \times 1} }}[/tex]

[tex]\large{ \rm{ \longrightarrow \: x = \dfrac{3 \pm 5}{2} }}[/tex]

So here,

[tex]\large{\boxed{ \rm{ \longrightarrow \: x = 4 \: or \: - 1}}}[/tex]

━━━━━━━━━━━━━━━━━━━━

Step-by-step explanation:

a)

given: a = 1, b = 5, c = 6

1) Discriminant → ∆= b² − (4*a*c)

∆= b² - (4*a*c)

∆= 5² - (4*1*6)

∆=25 - ( 24 )

∆= 25 - 24

∆= 1

2)

Solve x = (- b ± √Δ ) / 2a

x = ( 5 ± √25 ) / 2*1

x = ( 2 ± 5 ) / 2

x = ( 2 + 5 ) / 2 or x = ( 2 - 5 ) / 2

x = ( 7 ) / 2 or x = ( - 3 ) / 2

x = 3.5 or x = -1.5

b)

given: a = 1, b = 2, c = 1

1) Discriminant → ∆= b² − (4*a*c)

∆= b² - (4*a*c)

∆= 2² - (4*1*1)

∆= 4 - (4)

∆= 4 - 4

∆= 0

2)

Solve x = (- b ± √Δ ) / 2a

x = ( -2 ± √0) / 2*1

x = ( 2 ± 0 ) / 2

x = ( 2 + 0) / 2 or x = ( 2 - 0 ) / 2

x = ( 2 ) / 2 or x = ( 2 ) / 2

x = 1 or x = 1

x = 1 (only one solution)

c)

given: a = 1, b = -1, c = -20

1) Discriminant → ∆= b² − (4*a*c)

∆= b² - (4*a*c)

∆= -1² - (4*1*-20)

∆= 1 - ( -80 )

∆= 1 + 80

∆= 81

2)

Solve x = (- b ± √Δ ) / 2a

x = ( 2 ± √81 ) / 2*1

x = ( 2 ± 9 ) / 2

x = ( 2 + 9 ) / 2 or x = ( 2 - 9 ) / 2

x = ( 11 ) / 2 or x = ( - 7 ) / 2

x = 5.5 or x = -3.5

d)

given: a = 1, b = -3, c = -4

1) Discriminant → ∆= b² − (4*a*c)

∆= b² - (4*a*c)

∆= -3² - (4*1*-4)

∆= 9 - ( -16)

∆= 9 + 16

∆= 25

2)

Solve x = (- b ± √Δ ) / 2a

x = ( 3 ± √25 ) / 2*1

x = ( 3 ± 5 ) / 2

x = ( 3 + 5 ) / 2 or x = ( 3 - 5 ) / 2

x = ( 8 ) / 2 or x = ( - 2 ) / 2

x = 4 or x = -1

water flows into a tank 200m by 150m through a rectangular pipe 1.5m by 1.25m at 20kmph. in what time (in minutes) will the water rise by 2 meters​

Answers

Answer:

Volume required in the tank (200 × 150 × 2)m3. therefore, required time= (6000/625)= 96 min.

URGENT!!!! Which of the following statements is not true?(1 point) A.) For a complex number written in the form a+bi, the value of a is called the real part of the complex number. B.) A complex number is a number that can be written in the form a+bi where a and b are real numbers. C.) In order for a+bi to be a complex number, b must be nonzero. D.) Every real number is also a complex number.

Answers

Answer:

The correct option is;

Non of the above

Step-by-step explanation:

Option A is correct when a + b·i is a complex number, the real part = a and the imaginary part = b

Option B.) For the complex number,  a + b·i, a and b are real number

Option C) When a number, a + b·i is a complex number, then b ≠ 0

Option D) Whereby real numbers are numbers of the form  a + b·i, where b = 0, therefore, a real number is a complex number with the imaginary part = 0 and every real number is a complex number.

What is the relationship between two lines whose slopes are −8 and 1 8 ?

Answers

Answer:

They are perpendicular lines

Step-by-step explanation:

If one line has slope -8 and the other one has slope 1/8, they must be perpendicular to each other because the condition for perpendicular lines is that the slope of one must be the "opposite of the reciprocal of the slope of the original line."

the opposite of -8 is 8 , and the reciprocal of this is 1/8

Answer:

Below

Step-by-step explanation:

Let m and m' be the slopes of two different lines.

These lines are peependicular if and only if:

● m×m' = -1

Notice that:

● -8 ×(1/8) = -1

So the lines with the respectives slopes -8 and 1/8 are perpendicular.

Other Questions
my candle burns at both ends it will not last the night but sh my foes and oh my friends it gives a lovely light meaning ? When external appearances have little overall significance, they are termed When external appearances have little overall significance, they are termed what? When is it permissable to draw from copyrighted sources in art class?When I need to create an artwork to sell.O When I want to publish an artwork online.O When I need to create an original artwork for class.O When I want to practice drawing in my free time. The high temperature Monday was 4 degrees. The low temperature was -7 degrees. What is the difference between the high and low temperatures? Please I need help !!! The majority of thyroid hormones are secreted as ______but small amounts of _____is also secreted from the follicle. A mating between a true-breeding purple-flowered pea plant and a true-breeding white-flowered pea plant would produce a:______.A) True-breeding variety.B) Inbred organism.C) F1 generation.D) P generation.E) F2generation. list any 5 general objectives of social studies Zouas older sister borrowed $3,000 from a bank to buy a used car. She asked Zoua to figure out the total amount she will have to pay back at a 4.6% simple annual interest rate over a period of 48 months. How much will Zouas sister have to pay the bank? A can of paint claims that one can willcover 400 square feet. If you painteda square with the can of paint howlong would it be on each side?A 200 feetC 25 feetB 65 feetD 20 feet -4+7-2(3+1)Orders of Operations 2. Why are high-protein diets considered dangerous? Determine the A.P whose third term is 16 and the 7th term exceeds the 5th term by 12 (2m) Theories change as new information becomes available. Which actions are most likely to lead to the discovery of new information? Check all that apply.repeating experiments using the same experimental method each timerepeating experiments using the technology available at the time of the original experimentrepeating an experiment using the latest technologydeveloping a new experimental method to test an existing hypothesis simplify (1-3)(+3) leaving your answer in the form p+q3 Will had $4355.19 in his checking account. He writes checks for $1,204.90 and $890.99. How much does Will have left in his account? Write each number in standard notation 2.7 time 10 to the 8 please explain step by step Compare between literacy and illiteracy individuals in four point Your living environment, whether urban or rural, can affect your level of physical fitness. On average, Jim hearts beat 75 times per minute. Calculate the number of times his heart beats during 50 weeks Which statement about this system of equations is true? A. The system has no solution. B. The system has a unique solution at (0,6). C. The system has a unique solution at (0,-4). D. The system has infinitely many solutions.