Answer:
Explanation:
We don't need the mass of the car in the equation to solve for final velocity, since the values given for the acceleration and the time it took to accelerate to that velocity are given. The equation we need is the one for acceleration, which is
[tex]a=\frac{v_f-v_0}{t}[/tex] We are solving for final velocity, we know the initial velocity is 0 (starting from rest), and the time to complete this acceleration (10 m/s/s) is 3 seconds:
[tex]10=\frac{v_f-0}{3}[/tex] which is the same thing as saying
[tex]10=\frac{v}{3}[/tex] so
v = 30 m/s
Durante su práctica un atleta recorre en línea recta una distancia de 900m en un tiempo de 170 segundos. ¿Cuál fue su rapidez promedio?
Answer:
Velocidad promedio = 5.29 m/s
Explanation:
Dados los siguientes datos;
Distancia = 900 m
Tiempo = 170 segundos
Para encontrar la velocidad media;
La velocidad se puede definir como la distancia recorrida por unidad de tiempo. La velocidad es una cantidad escalar y, como tal, tiene magnitud pero no dirección.
Matemáticamente, la velocidad viene dada por la fórmula;
[tex] Velocidad = \frac{distancia}{tiempo}[/tex]
Sustituyendo en la fórmula anterior;
[tex] Velocidad = \frac{900}{170}[/tex]
Velocidad = 5.29 m/s
Por lo tanto, la velocidad promedio del automóvil es 5.29 metros por segundo.
when baking soda is added to a solution of citric acid, the temperature of the solution drops.
Answer:
i dont know guy sorry ha babu
1.12kg ball rolls forward with a net acceleration of 1.11ms2. What is the net force on the ball?
Explanation:
→ Force = Mass × Acceleration
→ F = (1.12 × 1.11) N
→ F = 1.2432 N
a baseball player hits a ball with 400 n of force.how much does the ball exert on the bat
Answer:
The ball exerts a force of 400 N on the bat.
Explanation:
Given that,
A baseball player hits a ball with 400 N of force.
We need to find the force the ball exert on the bat.
We know that,
According to Newton's third law, when object 1 exerts a force on an object 2, then object 2 will exert a force on object 1 but in opposite direction.
So, the ball exerts a force of 400 N on the bat.
Which instrument changes kinetic energy into electrical energy?
electric motor
hair drier
electric bell
dynamo
Answer:
Dynamo
Explanation:
As we all know, there are dynamos in bicycles. When we paddle the cycle, the wheels of the cycle rotates by generating kinetic energy. When the wheels rotate, the dynamo starts to rotate. This makes the motor inside the dynamo rotates and generate electrical energy.
Una prenda de 320gramos de ropa gira en el interior de una lavadora si dicha lavadora tiene 40 cm y gira con una frecuencia de 4 hz halla el periodo la velocidad angular la fuerza con la que gira la prenda y la velocidad lineal de la lavadora
Answer:
Período del tambor: [tex]T = 0.25\,s[/tex], fuerza sobre la prenda: [tex]F \approx 80.852\,N[/tex], velocidad lineal del tambor: [tex]v \approx 10.053\,\frac{m}{s}[/tex], velocidad angular del tambor: [tex]\omega \approx 25.133\,\frac{rad}{s}[/tex].
Explanation:
La expresión tiene un error por omisión, su forma correcta queda descrita a continuación:
"Una prenda de 320 gramos de ropa gira en el interior de una lavadora si dicha lavadora tiene un radio de 40 centímetros y gira con una frecuencia de 4 hertz. Halle a) el período, b) la velocidad angular, c) la fuerza con la que gira la prenda y d) la velocidad lineal de la lavadora."
El tambor gira a velocidad angular constante ([tex]\omega[/tex]), en radianes por segundo, lo cual significa que la prenda experimenta una aceleración centrífuga ([tex]a[/tex]), en metros por segundo al cuadrado. En primer lugar, calculamos el período de rotación del tambor ([tex]T[/tex]), en segundos:
[tex]T = \frac{1}{f}[/tex] (1)
Donde [tex]f[/tex] es la frecuencia, en hertz.
([tex]f = 4\,hz[/tex])
[tex]T = \frac{1}{4\,hz}[/tex]
[tex]T = 0.25\,s[/tex]
Ahora determinamos la fuerza aplicada sobre la prenda ([tex]F[/tex]), en newtons:
[tex]F = m\cdot a[/tex] (2)
[tex]F = \frac{4\pi^{2}\cdot m \cdot r}{T^{2}}[/tex] (2b)
Donde:
[tex]m[/tex] - Masa de la prenda, en kilogramos.
[tex]r[/tex] - Radio interior del tambor, en metros.
([tex]m = 0.32\,kg[/tex], [tex]r = 0.4\,m[/tex], [tex]T = 0.25\,s[/tex])
[tex]F = \frac{4\pi^{2}\cdot (0.32\,kg)\cdot (0.4\,m)}{(0.25\,s)^{2}}[/tex]
[tex]F \approx 80.852\,N[/tex]
La velocidad lineal de la lavadora es:
[tex]v = \frac{2\pi\cdot r}{T}[/tex] (3)
([tex]r = 0.4\,m[/tex], [tex]T = 0.25\,s[/tex])
[tex]v = \frac{2\pi\cdot (0.4\,m)}{0.25\,s}[/tex]
[tex]v \approx 10.053\,\frac{m}{s}[/tex]
Y la velocidad angular del tambor de la lavadora:
[tex]\omega = \frac{2\pi}{T}[/tex]
([tex]T = 0.25\,s[/tex])
[tex]\omega = \frac{2\pi}{0.25\,s}[/tex]
[tex]\omega \approx 25.133\,\frac{rad}{s}[/tex]
please I need the answer right now will mark you brainliest
Answer:
Explanation:
what do u need help with
Answer:
that's for frequency other answers are coming soon
When do we have positive/negative and zero acceleration.Write down the terms..................pls help mee
Answer:
Positive acceleration is when an object is increasing its velocity, speeding up.
Negative acceleration is when an object is decreasing its velocity, slowing down from it’s motion.
Zero acceleration is when an object is either at rest or moving without speeding up or slowing down, in a constant way.
why are circuit breakers used in parts of national grid ?
Answer:
To protect control circuits or small devices with insufficient cutting power
Explanation:
What happens when two polarizers are placed in a straight line, one behind the other?
A. They allow light to pass only if they are polarized in exactly the same direction.
B. They block all light if they are polarized in exactly the same direction.
C. They allow light to pass only if their directions of polarizations are exactly 90° apart.
D. They block all light if their directions of polarizations are exactly 90° apart.
E. They block all light If their directions of polarizations are either exactly the same or exactly 90° apart.
How does the temperature affect the speed of sound?
Explanation:
The relation between the speed of sound and the temperature is direct. As the temperature increases, the speed of sound also increases. If the substance is heated up, its molecules moves faster. As a result they collide faster and hence the speed increases. There is a relation between the speed of sound and the temperature i.e.
[tex]v=331+0.61T[/tex]
Hence, this is the required solution.
what happens if a voltmeter is connected in series with other components of the circuit (i.e , ammeter, cell, battery, resistor and wires). Why is it so?
Answer:the voltmeter measures the potential difference of the circuit,. Voltmeter is a device used to measure potential difference.
Explanation:
This circuit has five bulbs (A, B, C, D, and E). Select which bulbs would turn off if bulb C was unscrewed.
Answer:
C, A and E
Explanation:
In theory you always assume that the prostive is going to the negtive and since C, A and E are in series they all will turn off will turn off
Express 0.00005 s in µs
Answer:
0.00005 second =
50 microseconds
Time
0.00005
Second
50
Microsecond
A sled with mass 11.00 kg moves in a straight line on a frictionless horizontal surface. At one point in its path, its speed is 4.00 m/s; after it has traveled a distance 3.00 m beyond this point, its speed is 7.00 m/s. Use the work-energy theorem to find the force acting on the sled, assuming that this force is constant and that it acts in the direction of the sled's motion.
Answer:
The magnitude of the force acting on the sled is 60.5 newtons.
Explanation:
The Work-Energy Theorem states that the work done by the external force applied on the sled ([tex]W[/tex]), in joules, is equal to the change of its translational kinetic energy ([tex]\Delta K[/tex]), in joules:
[tex]W = \Delta K[/tex] (1)
By definitions of work and translational kinetic energy we expand the equation above:
[tex]F\cdot s = \frac{1}{2}\cdot m\cdot (v_{2}^{2}-v_{1}^{2})[/tex] (1b)
Where:
[tex]F[/tex] - External force applied on the sled, in newtons.
[tex]s[/tex] - Travelled distance, in meters.
[tex]v_{1}, v_{2}[/tex] - Initial and final velocities, in meters per second.
If we know that [tex]m = 11\,kg[/tex], [tex]v_{1} = 4\,\frac{m}{s}[/tex], [tex]v_{2} = 7\,\frac{m}{s}[/tex] and [tex]s = 3\,m[/tex], then the external force applied on the sled is:
[tex]F = \frac{m\cdot (v_{2}^{2}-v_{1}^{2})}{2\cdot s}[/tex]
[tex]F = \frac{(11\,kg)\cdot \left[\left(7\,\frac{m}{s} \right)^{2}-\left(4\,\frac{m}{s} \right)^{2}\right]}{2\cdot (3\,m)}[/tex]
[tex]F = 60.5\,N[/tex]
The magnitude of the force acting on the sled is 60.5 newtons.
mechanical energy that has been "lost" to friction has actually been destroyed.
Answer:
Yes
Explanation:
The friction is bigger than the mechanical energy so it kind off takes over the mechanical energy. but if the friction decreases mechanical energy can work on the object again
The pressure difference, , across a partial blockage in an artery (called a stenosis) is approximated by the equation where is the blood velocity, the blood viscosity , the blood density , the artery diameter, the area of the unobstructed artery, and the area of the stenosis. Determine the dimensions of the constants and . Would this equation be valid in any system of units
The question is incomplete. The complete question is :
The pressure difference, Δp, ac[tex]K_u[/tex]ross a partial blockage in an artery (called a stenosis) is approximated by the equation :
[tex]$\Delta p=K_v\frac{\mu V}{D}+K_u\left(\frac{A_0}{A_1}-1\right)^2 \rho V^2$[/tex]
Where V is the blood velocity, μ the blood viscosity {FT/L2}, ρ the blood density {M/L3}, D the artery diameter, [tex]A_0[/tex] the area of the unobstructed artery, and A1 the area of the stenosis. Determine the dimensions of the constants [tex]K_v[/tex] and [tex]K_u[/tex]. Would this equation be valid in any system of units?
Solution :
From the dimension homogeneity, we require :
[tex]$\Delta p=K_v\frac{\mu V}{D}+K_u\left(\frac{A_0}{A_1}-1\right)^2 \rho V^2$[/tex]
Here, x means dimension of x. i.e.
[tex]$[ML^{-1}T^{-2}]=\frac{[K_v][ML^{-1}T^{-1}][LT^{-1}]}{[L]}+[K_u][1][ML^{-3}][L^2T^{-2}]$[/tex]
[tex]$=[K_v][ML^{-1}T^{-2}]+[K_u][ML^{-1}T^{-2}]$[/tex]
So, [tex]$[K_u]=[K_v]=[1 ]=$[/tex] dimensionless
So, [tex]K_u[/tex] and [tex]K_v[/tex] are dimensionless constants.
This equation will be working in any system of units. The constants [tex]K_u[/tex] and [tex]K_v[/tex] will be different for different system of units.
How can you increase efficiency of a simple machine??
Answer:
Efficiency can be increase by using rollers in conjunction with the inclined plane. Wedge. The wedge is an adaptation of the inclined plane. It can be used to raise a heavy load over a short distance or to split a log.
Explanation:
Hope it helps
quicklime which is calcium oxide, is made by heathig limestone in a furnace as per the equation :
CaCO3(s)CaO(s)+CO2
7.00Kg of calcium oxide was formed. what mass of calcium carbonate was heated?
Answer:
h2 PRD algo trata gevbjjgcvnkoytewxc.
Answer:
12.5kg
Explanation:
The process is explained in the paper
Describe the difference between a sidereal day and a solar day.
Answer:
a sidereal day is the time it takes for the earth to rotate about it axis so that the distant star appears In the same position in the sky while a solar day is the time it takes for the earth to rotate about it axis so that the sun appears in the same position in the sky
When playing a game of disc golf, each throw to your target is considered to be a O Point O Stroke O Hit O Toss
Answer:
an o point i think
Explanation:
Which of the following is NOT a type of satellite?
a. a baseball thrown from pitcher to catcher
b. a rice bag being thrown towards a cornhole
c. a paper airplane being thrown
d. a jet ski tied to a dock
Write the equation which links gravitational field strength,gravitational potential energy,height and mass
Answer:
PE = mgh
Explanation:
PE is potential energy
m is mass
g is gravitational field strength
h is height
ΡΟ. . When preparing for any of the golf variation games (golf foot golf, disc golf), a person should consider the following before they start.
O Distance
O Terrain
O Wind Speed
O All of the above
Answer:
All of the above
Explanation:
To ensure the ball go to where we expected it go
help me with this please
Answer:
Family
1. Definition of a family
A family is a group of people living together in a home related by blood, marriage or adoption.
2. Two function of the family are;
socialization for the children in the family.love and happiness should be in a family for it to be function.3. Two types of family are;
Single parent family- this family includes one parent and his or her child, we can say it's an incomplete family.nuclear family- this family includes the two parents and their children or child, this family is known as the complete family.4. Two roles and responsibilities of the parents and children in the home are;
both parents must and should protect their child or children from harm.the children must have respect for the family.Accident in the Home
1. Definition of accident in the home
accidents in the home are common to persons of all ages, therefore home accidents occurs in one's home that may cause an result an injury of a person
2. Two types of accident in the home
fallsminor cuts and wounds3. The two uses of cereals in cooking
Cereals in cooking are used as thickened agents.
4. complete table
1. minor cuts and wounds
Causes: these are caused by broken glasses, contact with sharp instruments such as knife, pins and needles.Prevention: this can be prevented by keeping the Sharp tools in safe places after used2. Poisoning
Causes: poisoning can caused by in a result from children taking tablets for sweets, which can lead to death.preventions: you can prevent this by avoiding poisoning from the from the home or you could put it at a safe place that you know the child cannot get it.Care labels
1. definition of care label
care labels can be defined as a permanent label or we can say a tag, which contains regular instructions that is attached at the back of a cloth.
3. two classification of carbohydrates
MonopolyWhat is an example of a series circuit
Answer:
Explanation
The most famous and common example is Christmas tree lights. You can't tell easily by looking at them whether they are in series or parallel. But you sure know the difference when one of them burns out. When that happens, the whole string goes dead. No matter what you do (other than find out which bulb burned out) will not fix the problem.
Another example is anything that is temperature controlled. For example a furnace is controlled by a thermostat. When the room temperature reaches a certain point, the thermostat is constructed in a certain way so that it forms an open circuit and no current can flow through it. The furnace motor turns off and the furnace stops pumping hot air into a room.
what is the relationship between the energy of a wave and ruts frequency?
Answer:
Just as wavelength and frequency are related to light, they are also related to energy. The shorter the wavelengths and higher the frequency corresponds with greater energy. So the longer the wavelengths and lower the frequency results in lower energy. The energy equation is E = hν.
Explanation:
What does the survey reveal about your participation in rereational activity
Answer:
uugizj8iwuu3ueugeeuieieyeueureir
Activity 1 MATCH IT
Directions: Match Column A to Column B. Write your answer on the space provided before the number.
COLUMN A
__1. Hiking
__2. Orienteering
__3. Zumba
__4. Volleyball
__5.badminton
COLUMN B
A. It is an outdoor navigational recreational activity using specially drawn and detailed maps.
B. Created through on-the –spot aerobics class using the non- traditional music.
C.Going on an extended walk for the purpose of pleasure and exercise.
D. Can be traced from the ingenuity of William J. Morgan in 1895 at Holyoke Massachusetts.
E. Games are held inside the gym to avoid the effect of air in the flight of the shuttle.
Answer:
1. A hiking
2. C
3. B
4. D
5. E
how moment act when applying a force on the pedal of a bicycle
Answer:
Forces that the rider applies to the pedals, saddle and handlebars during speeding, hill climbing and starting are estimated from cine film records using elementary mechanics. The results are compared with force measurements obtained from an instrumented pedal. Pedal forces of up to three times bodyweight were recorded during starting. Handlebar loads were always significantly large.