Answer:
2x + y
Step-by-step explanation:
x² + xy - y² = 4
→ Remember the rule, bring the power down then minus 1
2x + y
Calculate 20% of 15,998
Answer:
3,199 approximately
Step-by-step explanation:
to find how much 20% of 15,998 does we multiply 15,998 with 20 and then divide it by 100
15,998 x 20 / 100 = 3,199
on the provided graph, plot the points where the following function crosses the x-axis and the y-axis g(x) = -5^x + 5, what does the graph look like?
Answer:
see image
Step-by-step explanation:
Is AABC-ADEF? If so, name which similarity postulate or theorem applies.
75
A. Similar - SSS
B. Similar - AA
0
C. Similar - SAS
D. Cannot be determined
Answer:
B. Similar - AA
Step-by-step explanation:
Two angles in ∆ABC are congruent to two corresponding angles in ∆DEF. Thus, it follows that the third pair of angles of both triangles would also be congruent.
Therefore, the three sides of ∆ABC and corresponding sides of ∆DEF will be proportional to each other.
This satisfies the AA Similarity Criterion. Therefore, ∆ABC ~ ∆DEF by AA.
Jan is as old as Gary was 15 years ago. Six years from now, Gary will be twice as old as Jan will be then. How old is Gary now?
Answer:
Gary is now 24years
Step-by-step explanation:
let the age of Jan be x and that of Gary be x+15
in six years time they will be as follows
Jan =x+6
Gary=x+15+6=x+21
2(x+6)=x+21
2x+12=x+21
collect the like terms
2x-x=21-12
x=9
Gary =9+15=24years
PLEASE HELP ME ASAP GIVING 10+ POINTS
The actual height of the building shown in the model is 150 feet What is the actual width of the building shown in the model?
Answer:
60 ft
Step-by-step explanation:
The answer has to be in feet units
Now that we know the height is 5 cm equivalent to 150 feet, what is the width of the building in feet units
5 cm = 150 ft
Rule: multiply cm by 30 to get the ft
2 cm = ?
2 cm × 30 = 60 ft
2 cm = 60 ft
prove that the square of an odd number is always 1 more than a multiple of 4
Answer:
By these examples you are able to see that the square of an odd number is always 1 more than a multiple of 4.
Step-by-step explanation:
For examples,
Let's consider squares of 3, 11, 25, 37 and 131.
[tex] {3}^{2} = 9[/tex]
8 is a multiple of 4, and 9 is more than 8.
[tex] {11}^{2} = 121[/tex]
120 is a multiple of 4 and 121 is one more than it.
[tex] {25}^{2} = 625[/tex]
624 is a multiple of 4 and 625 is one more than it.
[tex] {37}^{2} = 1369[/tex]
1368 is a multiple of 4 and 1369 is one more than 1368.
[tex] {131}^{2} = 17161[/tex]
17160 is a multiple of 4.
A.For a group of individuals, the random variable x denotes the number of credit cards per individual with the following distribution. x: 0 1 2 3 4 5 P(x): .27 .28 .20 .15 .08 .02 a. find the mean, variance and standard deviation of x b. find the probability that a randomly selected individual holds at least 1 card.
Answer:
1.55
2.66
1.631
Step-by-step explanation:
Given :
x: 0 1 2 3 4 5
P(x): .27 .28 .20 .15 .08 .02
The expected mean, E(X) = Σ(x*p(x))
E(X) = (0*0.27)+(1*0.28)+(2*0.20)+(3*0.15)+(4*0.08)+(5*0.02)
E(X) = 1.55
The expected variance :
Σx²*p(x) - E(X)
(0^2*0.27)+(1^2*0.28)+(2^2*0.20)+(3^2*0.15)+(4^2*0.08)+(5^2*0.02) - 1.55
4.21 - 1.55 = 2.66
The standard deviation :
√variance = √2.66 = 1.631
find the exact value of 6cos(105°)
Answer:
[tex]-\frac{3(\sqrt{6}-\sqrt{2})}{2}\text{ or } \frac{-3\sqrt{6}+3\sqrt{2}}{2}}\text{ or }\frac{3(\sqrt{2}-\sqrt{6})}{2}[/tex]
Step-by-step explanation:
There are multiple ways to achieve and even express the exact answer to this problem. Because the exact value of [tex]6\cos(105^{\circ}})[/tex] is a non-terminating (never-ending) decimal, it does not have a finite number of digits. Therefore, you cannot express it as an exact value as a decimal, as you'd either have to round or truncate.
Solution 1 (Cosine Addition Identity):
Nonetheless, to find the exact value we must use trigonometry identities.
Identity used:
[tex]\cos(\alpha +\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta[/tex]
Notice that [tex]45+60=105[/tex] and therefore we can easily solve this problem if we know values of [tex]\cos(45^{\circ})[/tex], [tex]\cos(60^{\circ})[/tex], [tex]\sin (45^{\circ})[/tex], and [tex]\sin(60^{\circ})[/tex], which is plausible as they are all key angles on the unit circle.
Recall from either memory or the unit circle that:
[tex]\cos(45^{\circ})=\sin(45^{\circ})=\frac{\sqrt{2}}{2}[/tex] [tex]\cos(60^{\circ})=\frac{1}{2}[/tex] [tex]\sin(60^{\circ})=\frac{\sqrt{3}}{2}[/tex]Therefore, we have:
[tex]\cos(105^{\circ})=\cos(45^{\circ}+60^{\circ}}),\\\cos(45^{\circ}+60^{\circ}})=\cos 45^{\circ}\cos 60^{\circ}-\sin 45^{\circ}\sin 60^{\circ},\\\cos(45^{\circ}+60^{\circ}})=\frac{\sqrt{2}}{2}\cdot \frac{1}{2}-\frac{\sqrt{2}}{2}\cdot \frac{\sqrt{3}}{2},\\\cos(105^{\circ})=\frac{\sqrt{2}}{4}-\frac{\sqrt{6}}{4},\\\cos(105^{\circ})={\frac{-\sqrt{6}+\sqrt{2}}{4}}[/tex]
Since we want the value of [tex]6\cos 105^{\circ}[/tex], simply multiply this by 6 to get your final answer:
[tex]6\cdot {\frac{-\sqrt{6}+\sqrt{2}}{4}}=\frac{-3\sqrt{6}+3\sqrt{2}}{2}}=\boxed{\frac{3(\sqrt{2}-\sqrt{6})}{2}}[/tex]
Solution 2 (Combination of trig. identities):
Although less plausible, you may have the following memorized:
[tex]\sin 15^{\circ}=\cos75^{\circ}=\frac{\sqrt{6}-\sqrt{2}}{4},\\\sin 75^{\circ}=\cos15^{\circ}=\frac{\sqrt{6}+\sqrt{2}}{4}[/tex]
If so, we can use the following trig. identity:
[tex]\cos(\theta)=\sin(90^{\circ}-\theta)[/tex] (the cosine of angle theta is equal to the sine of the supplement of angle theta - the converse is also true)
Therefore,
[tex]\cos (105^{\circ})=\sin (90^{\circ}-105^{\circ})=\sin(-15^{\circ})[/tex]
Recall another trig. identity:
[tex]\sin(-\theta)=-\sin (\theta)[/tex] and therefore:
[tex]\sin (-15^{\circ})=-\sin (15^{\circ})[/tex]
Multiply by 6 to get:
[tex]6\cos (105^{\circ})=-6\sin (15^{\circ})=-6\cdot \frac{\sqrt{6}-\sqrt{2}}{4}=\boxed{-\frac{3(\sqrt{6}-\sqrt{2})}{2}}[/tex] (alternative final answer).
The length of a rectangle is 6 inches more than the width. The perimeter is 28 inches. Find the length and the width (in inches).
Answer:
The length of the rectangle is 10 inches, and the width is 4 inches.
Step-by-step explanation:
Given that the length of a rectangle is 6 inches more than the width, and the perimeter is 28 inches, the following calculation must be performed to find the length and the width:
(X + X + 6) x 2 = 28
2X + 2X + 12 = 28
4X = 28 - 12
X = 16/4
X = 4
Therefore, the length of the rectangle is 10 inches, and the width is 4 inches.
If a student answered 77 exam questions correctly out of 100, what fraction
and what percentage of questions did the student answer incorrectly?
Choose two answers.
A. 0.77%
B.
20
100
IC
23
100
I D. 23%
O E. 77%
OF
77
100
Answer: 23%
Step-by-step explanation: 77 + 23 is 100
Answer:
77 out of 100
Step-by-step explanation:
For a fraction, it would look like 77/100,
and for percentage, 77%.
The lengths of the sides of a triangle are 3, 3, 3V2. Can the triangle be a right triangle?
[tex] {\bold{\red{\huge{\mathbb{QUESTION}}}}} [/tex]
The lengths of the sides of a triangle are 3, 3, 3√2. Can the triangle be a right triangle?
[tex]\bold{ \red{\star{\blue{TO \: \: PROVE }}}}[/tex]
IF ITS A RIGHT ANGLED OR NOT
[tex]\bold{\blue{\star{\red{FORMULA}}}}[/tex]
IF IT WILL FOLLOW PYTHAGORAS THEOREM THEN IT WILL BE A RIGHT ANGLE TRIANGLE.
[tex]{HYPOTENUSE}^{2} \\ ={ PERPENDICULAR}^{2}+{BASE}^{2} [/tex]
[tex]\bold{ \red{\star{\orange{GIVEN }}}}[/tex]
1ST SIDE -> 3
2ND SIDE -> 3
3RD SIDE ->3√2
[tex] \huge\mathbb{\red A \pink{N}\purple{S} \blue{W} \orange{ER}}[/tex]
[tex]{HYPOTENUSE}^{2}\\ ={ PERPENDICULAR}^{2}+{BASE}^{2} \\{h}^{2}={p}^{2}+{b}^{2} [/tex]
AS HYPOTENUSE is always greater than other 2 sides so 3√2 can only be hypotenuse if it's a right angle triangle
[tex]{(3 \sqrt{2})}^{2} = {3}^{2} + {3}^{2} \\ 9 \times2 = 9 + 9 \\ 18 = 18[/tex]
[tex] {\red{\star}}{ \blue{HENCE \: PROVED}} { \red{ \star}}[/tex]
[tex] \red \star{Thanks \: And \: Brainlist} \blue\star \\ \green\star If \: U \: Liked \: My \: Answer \purple \star[/tex]
What is the median of Restaurant A's food quality ratings?
4
5
1
3
2
A guide wire of length 108 meters runs from the top of an antenna to the ground. If the angle of elevation to the top of the antenna is 42.3 degrees, then what is the height of the antenna
Answer: Approximately 72.69 meters
Step-by-step explanation:
Antenna height = h[tex]sin(42.3)=\frac{opposite}{hypotenuse} =\frac{h}{108} \\\\108*sin(42.3)=h\\\\h=72.685[/tex]
The height of the antenna by using the Pythagoras theorem is 72.68 meters.
What is trigonometry?"Trigonometry is one of the branches of mathematics that deals with the relationship between the sides of a triangle (right triangle) with its angles".
For the given situation,
Length of guidewire = 108 meters
Angle of elevation = 42.3 degrees
Height of the antenna be 'h'.
By Pythagoras theorem,
[tex]Sine[/tex] θ = [tex]\frac{Perpendicular}{hypotenuse}[/tex]
On substituting the above values,
⇒ [tex]Sine 42.3 = \frac{h}{108}[/tex]
⇒ [tex]0.6730 =\frac{h}{108}[/tex]
⇒ [tex]h=0.6730[/tex] × [tex]108[/tex]
⇒ [tex]h= 72.68[/tex]
Hence we can conclude that the height of the antenna is 72.68 meters.
Learn more about trigonometry here
https://brainly.com/question/13971311
#SPJ2
Write a polynomial f (x) that satisfies the given conditions. Polynomial of lowest degree with zeros of -4 (multiplicity 3), 1 (multiplicity 1), and with f(0) = 320.
Answer:
Step-by-step explanation:
Polynomial f(x) has the following conditions: zeros of -4 (multiplicity 3), 1 (multiplicity 1), and with f(0) = 320.
The first part zeros of -4 means (x+4) and multiplicity 3 means (x+4)^3.
The second part zeros of 1 means (x-1) and multiplicity 1 means (x-1).
The third part f(0) = 320 means substituting x=0 into (x+4)^3*(x-1)*k =320
(0+4)^3*(0-1)*k = 320
-64k = 320
k = -5
Combining all three conditions, f(x)
= -5(x+4)^3*(x-1)
= -5(x^3 + 3*4*x^2 + 3*4*4*x + 4^3)(x-1)
= -5(x^4 + 12x^3 + 48x^2 + 64x - x^3 - 12x^2 - 48x - 64)
= -5(x^4 + 11x^3 + 36x^2 + 16x -64)
= -5x^3 -55x^3 - 180x^2 - 80x + 320
Answer:
Step-by-step explanation:
-4 is a root for 3 times and 1 is root for once
so (x+4)^3 * (x-1) is part of f(x)
the constant term there is 4^3*(-1)=-64
so there is a multiplier of 320/-64=-5
f(x) = -5 * (x+4)^3 * (x-1)
A random sample of 35 employees of the local green technologies plant Greenies, who completed two years of college, were asked to take a basic mathematics test. The mean and standard deviation of their scores were 75.1 and 12.8, respectively. In a random sample of 50 employees who had only completed high school, the mean and standard deviation of the test scores were 72.1 and 14.6, respectively. Assuming equal variance between the two populations, can we infer at the .10 level of significance that students who completed two years of college had a higher average than students who had only completed high school
Answer:
There is no significance evidence that students who completed two years of college had a higher average than students who had only completed high school.
Step-by-step explanation:
The hypothesis :
H0 : μ1 = μ2
H1 : μ1 > μ2
Given :
n1 = 35 ; x1 = 75.1 ; s1 = 12.8
n2 = 50 ; x2 = 72.1 ; s2 = 14.6
Pooled variance = Sp² = (df1*s1² + df2*s2²) ÷ (n1 + n2 - 2)
df1 = n1 - 1 = 35 - 1 = 34
df2 = n2 - 1 = 50 - 1 = 49
(x1 - x2) ÷ Sp(√(1/n1 + 1/n2))
Sp² = (34*12.8^2 + 49*14.6^2) / (35+50-2)
Sp² = (5570.56 + 10444.84) / 83
Sp² = 192.95662
Sp = √192.95662
Sp = 13.89
Test statistic = (75.1 - 72.1) / 13.89 * √(1/35 + 1/50)
Test statistic = 3 / (13.89 * 0.2203892)
Test statistic = 0.980
df = n1 + n2 - 2
df = 35 + 50 - 2 = 83
Using the Pvalue calculator :
Pvalue(0.980, 83) = 0.165
α = 0.1
Pvalue > α ; We fail to reject the H0; and conclude that there is no significance evidence that students who completed two years of college had a higher average than students who had only completed high school.
16.3 m 16.7 m What is the perimeter of the whole garden? LI m busti 2027
The perimeter of the whole garden would be 66m.
Hope this helps! :)
Simplify 2(12-18\3+4)
Question
Simplify
[tex]2(12 - \frac{18}{3} + 4)[/tex]
Answer:-
ATQ->
[tex]2(12 - ( \frac{ \cancel{18}^{ \: \: \: 6} }{3} ) + 4 \\ 2(12 - 6 + 4) \\ 2(16 - 6) \\ 2(10) \\ 20 \: \: is \: your \: ans[/tex]
Answer:
Depends on how the 3 and the 18 are positioned in the fractions on the equation.
47/3
4
Step-by-step explanation:
Step 1. To simplify this, you need to know one of the most basic sayings in math which summarizes the Order of Operations: PEMDAS
Using PEMDAS:
P- Parenthesis
E- Exponents
M- Multiply
D- Divide
A- Add
S- Subtract
P- Parenthesis: We start off by preforming the parts of the equation within the parenthesis.
The 2 on the outside of the parenthesis, will not affect anything until we deal with what is inside the parenthesis.
The next part that we do, is to go through the rest of the steps, looking for either exponents, multiplication or division, skipping over the adding and subtracting until those are done.
The next part that we see, is Division.
D- Division
We find the point of division after the 18. The value we get has to be either:
a. 3/18
b. 18/3
depending on what you were asking for.
The equation, 2(12-18\3+4) at the bolded point, states that the division should be 1/6 because of the way of the division symbol.
Now the equation should either be one of the following:
a. 2(12-1/6+4)
b. 2(12-6+4)
A-Addition
Now, we can add the 4 to the number we got before, which should get us either
A. 1/6+4
B. 6+4
which added together gets us either
A. 25/6<=>4+1/6
B. 10
S-Subtraction
Now, we subtract both parts from the value of 12 getting us:
A. 12-(4+1/6)=12-4-1/6=8-1/6=7+5/6<=>47/6
B. 12-10=2
M-multiply:
Now we move on to the 2 we put aside earlier and multiply both of the answers:
A. 2(47/6)=47/3 or 15+2/3
B. 2(2)=4
Thus the answer is either 47/3 or 4
Help. I will be guessing on this, but I want to make sure this is on here so no one has to guess like I am. Help a brother out
Answer:
Line 3
Step-by-step explanation:
→ Calculate gradient
[tex]\frac{6-3}{4-2} =1.5[/tex]
Answer:
Line 3
Step-by-step explanation:
(0,0) & ( 4 , 6)
[tex]Slope = \frac{y_{2}-y_{1}}{x_{2}-x_{1}}\\\\=\frac{6-0}{4-0}\\\\=\frac{6}{4}\\\\=\frac{3}{2}\\\\=1\frac{1}{2}[/tex]
the shorter side of a rectangle is 60% of the longer side and the perimeter of the rectangle is 96 inches. find the side lengths
Answer:length 30, width 18
Step-by-step explanation:
60% +100%=160%
160% × 2 = 320 %
96/320 = 0.3 ×100 =30 ( length)
30 × 0.6 =18 (width)
Check: (18 + 30) 2 = 96
Step by step please help answer.
The diameter of a circular reservoir is 840 feet. To walk around the reservoir, you would walk approximately how far? (Use tt = 22/7.)
(1) 267 ft
(2) 2,640 ft
(3) 2,800 ft
(4) 18,480 ft
(5) Not enough information is given.
Answer:
(2) 2,640 ft
Step-by-step explanation:
I'm going to assume that in this question, you are walking 1 full circle around the reservoir. That would mean you need to calculate the circumference of the circular reservoir.
The circumference formula is:
C = ⫪d
C stands for Circumference
d stands for diameter
I will use 22/7 instead of pi, so the formula looks more like this:
C = (22/7)(d)
The diameter is 840 feet, so we will substitute the variable d with 840:
C = (22/7)(840)
You can plug this part into the calculator, but by hand, it'll look something like this:
(22/7)*840 = (22*840)/7
18,480/7 = 2.640
Hope it helps (●'◡'●)
1. S = 10 mm
V= S×S×S
=___×___×___
=____ mm3
Hi there!
»»————- ★ ————-««
I believe your answer is:
[tex]V=1000\text{mm}^3[/tex]
»»————- ★ ————-««
Here’s why:
⸻⸻⸻⸻
I am assuming by the infomation given that the figure is a cube.
⸻⸻⸻⸻
[tex]\boxed{\text{Finding the volume of the cube...}}\\\\S = 10mm; V= s^3\\--------------\\\rightarrow V = 10^3\\\\\rightarrow V = 10 * 10 * 10\\\\\rightarrow \boxed{V=1000\text{mm}^3}[/tex]
⸻⸻⸻⸻
»»————- ★ ————-««
Hope this helps you. I apologize if it’s incorrect.
Z varies directly as Square x and inversely as y. If z = 187 when x = 64 and y = 6, find z if and 9. (Round off your answer to the nearest hundredth.)
Answer:
Z = 50
Step-by-step explanation:
Given the following data;
Z = 187
x = 64
y = 6
Translating the word problem into an algebraic expression, we have;
Z = k√x/y
First of all, we would find the constant of proportionality, k;
187 = k√64/6
187 * 6 = k√64
1122 = 8k
k = 1122/8
k = 140.25
To find z, when x and y = 9
Z = 140.25√9/9
Z = (140.25 * 3)/9
Z = 420.75/9
Z = 46.75 ≈ 50
Note: The values in the latter part of the question isn't explicitly stated, so I assumed a value of 9 for both x and y.
You are installing new carpeting in a family room. The room is rectangular with dimensions 2012feet × 1318feet . You intend to install baseboards around the entire perimeter of the room except for a 312 -foot opening into the kitchen. How many linear feet of board must you purchase?
Answer: 1. When you estimate, it is not an exact measurement. 3ft 8 in gets rounded to 4ft and 12 ft 3 in rounds to 12ft. now find the perimeter. P=2l+2w P= 2*12 +2*4 P=32feet
2. 3ft 8in = 3 8/12 or reduced to 3 2/3 12ft 3in = 12 3/12 or reduced to 12 1/4 The fractional part is referring to a fraction of a foot.
3. The perimeter of the room is P=2l+2w or P=2(12 1/4) + 2(3 2/3) p=24 1/2 + 7 1/3 P= 31 5/6 feet
4. The estimate and the actual are very close. They are 1/6 of a foot apart.
5a. Total baseboard 31 5/6ft - 2 1/4 ft = 29 7/12 feet needed.
5b. Take the total and divide it by 8ft = 29 7/12 divided by 8= 3.7 You are not buying a fraction of a board so you would need 4 boards.
An ordinary fair die is a cube with the numbers one through six on the sides represented by painted that. Imagine that such a die is rolled twice in succession and that the face values of the two goals are added together. This song is recorded as the outcome of a single trial of a random experiment. Compute the probability of each of the following events. Event a: the sun is greater than six
Answer:
ok so what i think your trying to ask is if we roll two dice that the sum will be more then 6
Two dice
Assuming that the dice are unbiased or not " loaded".
Each side has the same probability, is 1/6 =0.16667, to turn up when rolled, if the die (D) is unbiased. The probability of a side turning up on D1 when 2 dice ( D1,D2) are rolled, is independent of the side turning up in D2. So this is an independent event.
How many ways can one get a sum total of 6 if D1 &D2 are rolled at the same time?
These are the possibilities
Case 1.
D1 =1 & D2=5
Or
D1= 5 & D2=1
Case 2.
D1 =2 & D2=4
Or
D1= 4 & D2= 2
Case 3. D1=3, D2=3
P3 =0.027778
Let's say, P 1 the probability for case 1 and P2 for case 2. There are no other cases.
The final probability P and is the sum total P = P1 + P2 + P3 the probability law of mutually exclusive events.
P1= 0.02778+ 0.02778 =0.055558
P2= 0.02778+0.02778 =0.055558
Same way,
P3=0.027778, when there is only one way to get the sum 6.
So, P = 0.138894
Based on truncating at the sixth decimal place.
A visual representation with two unbiased dice and the possible cases would also give the same result and is a short cut method. I like to derive from the basics.
Hope This Helps!!!
Use the P (A + B) = P (A) x P (B) rule to find the probability of system failure. Let A and B be the events that the first alarm and second alarm, respectively, fail. Do you get the same answer you did in the earlier question?
Answer:
answer is in the pic Mark me brainliest plz
Step-by-step explanation:
Answer:
The probability of the first alarm failing is (1 - 0.8) = 0.2
The probability of the second alarm failing is (1−0.9)=0.1.
Using the multiplication rule (since A and B are independent), the probability of failure is 0.2 * 0.1 = 0.02
Step-by-step explanation:
Consider the following function.
f(x) = x sin(x), a = 0, n = 4, −0.5 ≤ x ≤ 0.5
(a) Approximate f by a Taylor polynomial with degree n at the number a.
T4(x) =
(b) Use Taylor's Inequality to estimate the accuracy of the approximation
f(x) ≈ Tn(x) when x lies in the given interval. (Round your answer to four decimal places.)
|R4(x)| ≤
(c) Check your result in part (b) by graphing |Rn(x)|.
A 3 phase traffic signal is designed with 2 seconds of all red per phase and phase lengths of 25 seconds, 30 seconds, and 15 seconds. The cycle length is ____ seconds.
Answer:
[tex]CL=76secs[/tex]
Step-by-step explanation:
From the question we are told that:
Traffic Phases p=3
Phase time Lengths
25 seconds, 30 seconds, and 15 seconds
Red Per Phase [tex]T=2sec[/tex]
Generally the equation for Cycle Length is mathematically given by
[tex]CL=Phase\ Length+Red\ Per\ Phase[/tex]
[tex]CL=(25+2)+(30+2)+(15+2)[/tex]
[tex]CL=76secs[/tex]
simplify 6 x + 3y /3
Answer:
6x + y
Step-by-step explanation:
6x + 3y/3
6x + y
Answer:
6x + y
Step-by-step explanation:
6x + 3y / 3
cancel 3y by 3
6x + y
Express 20% as a decimal number
Answer:
.20
Step-by-step explanation:
take the two digit % and move the decimal two places to the left
Answer: 0.2
Step-by-step explanation: 20/100 is 1/5 and 1/5 means 1 divided by 5 so the answer is 0.2
An air conditioning system can circulate 310 cubic feet of air per minute. How many cubic yards of air can it circulate per minute? The air conditioning system can circulate about cubic yards of air per minute.
Answer:
310/[tex]3^{3}[/tex] = 310/27 =11.48
Step-by-step explanation:
Answer:
310/ = 310/27 =11.48
Step-by-step explanation: