1. 0.026 mg of [tex]Ag_2CrO_4[/tex] will dissolve in 10 mL of [tex]H_2O[/tex]. 2. [tex]Ag_2CrO_4[/tex] will precipitate when 5 mL of 0.004M [tex]AgNO_3[/tex] are added to 5 mL of 0.0024M [tex]K_2CrO_4[/tex].
1. To determine how many milligrams of [tex]Ag_2CrO_4[/tex] will dissolve in 10.0 mL of [tex]H_2O[/tex],
we can use the Ksp value of 8.26*10-11.
First, we can calculate the molar solubility of [tex]Ag_2CrO_4[/tex], which is the square root of the Ksp value: √(8.26*10-11) = 9.08*10-6 M.
Then, we can convert the molar solubility to milligrams per milliliter (mg/mL) by multiplying it by the molar mass of [tex]Ag_2CrO_4[/tex] (331.74 g/mol) and dividing by 1000: 9.08*10-6 M * 331.74 g/mol / 1000 mL = 0.00301 mg/mL.
Therefore, 0.00301 mg/mL * 10 mL = 0.0301 mg of [tex]Ag_2CrO_4[/tex] will dissolve in 10 mL of [tex]H_2O[/tex].
2. To determine if [tex]Ag_2CrO_4[/tex] will precipitate when 5 mL of 0.004M [tex]AgNO_3[/tex] are added to 5 mL of 0.0024M K2CrO4,
we can use the Ksp value of 8.26*10-11.
First, we need to calculate the ion product (Qsp) using the concentrations of Ag+ and CrO42- ions:
Qsp = [Ag+]2 [CrO42-] = (0.004 M)2 (0.0024 M) = 3.84*10-8.
Comparing Qsp to Ksp, we can see that Qsp is greater than Ksp, which means that [tex]Ag_2CrO_4[/tex] will precipitate.
Therefore, [tex]Ag_2CrO_4[/tex] will form a yellow precipitate when 5 mL of 0.004M [tex]AgNO_3[/tex] are added to 5 mL of 0.0024M [tex]K_2CrO_4[/tex].
For more such questions on dissolve, click on:
https://brainly.com/question/6319922
#SPJ11
Using Ksp, solubility of Ag2CrO4 in 10.0 mL H2O is 2.19 x 10^-5 mg. (8.26 x 10^-11 = [Ag+]^2[CrO4^-2], Ag2CrO4 MW= 331.73 g/mol)
Qsp = [Ag+]^2 [CrO4^-2] = 1.67 x 10^-12, Qsp < Ksp, Ag2CrO4 precipitates. (Ksp = 8.26 x 10^-11, AgNO3 + K2CrO4 -> Ag2CrO4↓+ 2KNO3)a
To calculate how many milligrams of Ag2CrO4 will dissolve in 10.0 mL of H2O, we first need to find the molar solubility (S) of the compound. Using the Ksp value of 8.26x10^-11, we can write the expression for the equilibrium constant and solve for S. S = sqrt(Ksp), which gives us S = 9.09x10^-6 M. We can then use the molar mass of Ag2CrO4 (331.74 g/mol) to convert the molar solubility to milligrams of Ag2CrO4 per 10.0 mL of water, giving us 3.01 mg of Ag2CrO4. To show that Ag2CrO4 should precipitate when 5 mL of 0.004 M AgNO3 is added to 5 mL of 0.0024 M K2CrO4, we need to calculate the ion product (IP) and compare it to the Ksp. IP = [Ag+][CrO42-] = (0.004 M)(0.0024 M) = 9.6x10^-6, which is greater than the Ksp value of 8.26x10^-11. Since IP > Ksp, the solution is supersaturated and Ag2CrO4 should precipitate.
Learn more about Ag2CrO4 here:
https://brainly.com/question/14789299
#SPJ11
2. A 2. 4 liter container of hydrogen gas has a pressure of 0. 5 atm,
what volume would be necessary to decrease the pressure to 1. 7
atm?
So, the volume that would be necessary to decrease the pressure to 1.7 atm is 0.7058 litre. Given data: Pressure of hydrogen gas in a container = 0.5 atm; and Volume of container = 2.4 litre
To Find: What volume would be necessary to decrease the pressure to 1.7 atm?
Let's use Boyle's Law,
Boyle's Law: Boyle's law states that at constant temperature for a fixed mass, the absolute pressure and the volume of a gas are inversely proportional to each other. Mathematically, Boyle's law is expressed as
PV=k,
Where,
P = Pressure of the gas
V = Volume of the gas
k = constant
Let's solve for k,
PV = k
For initial conditions,
Pressure = P1 = 0.5 atm
Volume = V1 = 2.4 liter
For final conditions,
Pressure = P2 = 1.7 atm
Volume = V2 (to be found)
Using Boyle's Law,
P1V1 = P2V2
V2 = P1V1/P2
= (0.5 atm x 2.4 liter)/(1.7 atm)V2
= 0.7058 liter
To learn more about Boyle's Law, refer:-
https://brainly.com/question/30367133
#SPJ11
what is the ph of a 0.758 m lin3 solution at 25 c (ka for hn3 = 1.9 x 10^-5)
The pH of a 0.758 M HN3 solution at 25°C is approximately 2.43. HN3 (hydrazoic acid) is a weak acid.
Because of HN3 (hydrazoic acid) is a weak acid, so we can use the formula for calculating the pH of a weak acid solution:
Ka = [H+][N3-]/[HN3]
We can assume that the concentration of H+ from water dissociation is negligible compared to the concentration of H+ from HN3.
Let x be the concentration of H+ and N3- ions produced by the dissociation of HN3.
Then:
[tex]Ka = x^2 / (0.758 - x)\\1.9 x 10^-5 = x^2 / (0.758 - x)[/tex]
Rearranging:
[tex]x^2 + 1.9 x 10^-^5 x - 1.9 x 10^-^5 (0.758) = 0[/tex]
Using the quadratic formula:
x = [-b ± sqrt(b² - 4ac)] / 2a
where a = 1, b = 1.9 x 10⁻⁵, and c = -1.9 x 10⁻⁵ (0.758)
We get two solutions:
x = 0.00374 M (ignoring the negative root)
This is the concentration of H+ ions.
The pH is calculated as:
pH = -log[H+]
pH = -log(0.00374) = 2.43
Learn more about pH: https://brainly.com/question/15289714
#SPJ11
Draw the Lewis structures for three possible resonance forms of the OCN ion. For every 5. structure calculate the formal charge for each atom, and write it above the atoms in your diagrams. On the basis of the formal charges decide which is the most likely structure, and which is the least likely structure for the ion. On the basis of the bond type in the most likely structure would you expect the C-O or the C-N bond to be shorter? Explain.
In the most likely structure, the bond type is a double bond between C and O, and a single bond between C and N. Double bonds are generally shorter and stronger than single bonds, so you would expect the C-O bond to be shorter than the C-N bond.
The OCN ion is a polyatomic ion that contains three atoms: oxygen, carbon, and nitrogen. The Lewis structure of the OCN ion can be represented by three possible resonance forms, which differ in the position of the double bond between the carbon and nitrogen atoms. On the basis of the bond type in the most likely structure, we would expect the C-N bond to be shorter than the C-O bond. In the second resonance form, the carbon and nitrogen atoms are connected by a double bond, which is shorter and stronger than a single bond. The carbon and oxygen atoms are connected by a single bond, which is longer and weaker than a double bond. Therefore, the C-N bond in the second resonance form is expected to be shorter than the C-O bond.
In summary, the most likely structure of the OCN ion is the second resonance form, which has a formal charge of 0 on all atoms. The C-N bond in this structure is expected to be shorter than the C-O bond due to the bond type.
The Lewis structures for the three possible resonance forms of the OCN⁻ ion are as follows:
1. [O=C-N]⁻
Formal charges: O: 0, C: 0, N: -1
2. [O-C≡N]⁻
Formal charges: O: -1, C: 0, N: 0
3. [O≡C-N]⁻
Formal charges: O: 0, C: +1, N: -1
Considering the formal charges, the most likely structure is the first one ([O=C-N]⁻) because all atoms have the lowest formal charges. The least likely structure is the third one ([O≡C-N]⁻) due to the presence of formal charges of +1 and -1 on C and N, respectively.
To know more about bond visit :-
https://brainly.com/question/10777799
#SPJ11
a) what assumption is made about the reaction at the temperature at which crystals become visible? is it true? explain.
The assumption may also not be true in reactions where the rate of crystal formation is slow, and it takes a long time for crystals to become visible. In such cases, the reaction may not have reached equilibrium, and the concentration of reactants and products may still be changing.
When crystals become visible during a reaction, it is assumed that the reaction has reached a state of equilibrium. This means that the forward and reverse reactions are occurring at the same rate, and the concentration of the reactants and products are constant. However, this assumption may not always be true as some reactions may continue to proceed even after crystals have formed.
Moreover, the assumption may also not be true in reactions where the rate of crystal formation is slow, and it takes a long time for crystals to become visible. In such cases, the reaction may not have reached equilibrium, and the concentration of reactants and products may still be changing. while the formation of crystals can be an indicator of a reaction reaching equilibrium, it is not always a reliable one, and further testing may be required to confirm it.
learn more about equilibrium Refer: https://brainly.com/question/30694482
#SPJ11
predict the shapes of the following molecules or ions: (a) clcn; (b) ocs; (c) [sih3] ; (d) [sncl5] ; (e) si2ocl6; (f) [ge(c2o4)3]2 ; (g) [pbcl6]2 ; (h) [sns4]4 .
According to VSEPR the shapes are: (a) ClCN: Linear (b) OCS: Linear (c) [SiH3]- : Trigonal planar (d) [SnCl5]- : Square pyramidal (e) Si2OCl6: Octahedral (for each Si atom) (f) [Ge(C2O4)3]2- : Octahedral (g) [PbCl6]2- : Octahedral (h) [SnS4]4- : Tetrahedral
To predict the shapes of the given molecules or ions, we need to use the VSEPR theory.
(a) ClCN: This molecule has a central carbon atom bonded to a chlorine and a nitrogen atom. Since there are three atoms and no lone pairs of electrons, the molecule has a linear shape.
(b) OCS: This molecule has a central carbon atom bonded to an oxygen and a sulfur atom. Since there are three atoms and no lone pairs of electrons, the molecule has a linear shape.
(c) [SiH3]: This ion has a central silicon atom bonded to three hydrogen atoms. Since there are three atoms and no lone pairs of electrons, the ion has a trigonal planar shape.
(d) [SnCl5]: This ion has a central tin atom bonded to five chlorine atoms. Since there are five atoms and no lone pairs of electrons, the ion has a trigonal bipyramidal shape.
(e) Si2OCl6: This molecule has two central silicon atoms bonded to six oxygen and six chlorine atoms. Since there are 12 atoms and no lone pairs of electrons, the molecule has an octahedral shape.
(f) [Ge(C2O4)3]2: This ion has a central germanium atom bonded to six oxalate ligands (C2O4). Since there are six ligands and no lone pairs of electrons, the ion has an octahedral shape.
(g) [PbCl6]2: This ion has a central lead atom bonded to six chlorine atoms. Since there are six atoms and no lone pairs of electrons, the ion has an octahedral shape.
(h) [SnS4]4: This ion has a central tin atom bonded to four sulfur atoms. Since there are four atoms and no lone pairs of electrons, the ion has a tetrahedral shape.
Know more about VSEPR Theory here:
https://brainly.com/question/31162132
#SPJ11
identify how you would make hexylamine from hexanoic acid: (a) 1-Bromohexane (b) 1-Bromopentane (c) Hexanoic acid (d) 1-Cyanopentane
Hexylamine can be synthesized from hexanoic acid through a two-step process involving the conversion of hexanoic acid to its corresponding acid chloride followed by a reaction with ammonia.To make the acid chloride, hexanoic acid is treated with thionyl chloride (SOCl2).
This reaction replaces the hydroxyl group (-OH) with a chloride group (-Cl), resulting in the formation of hexanoyl chloride.Hexanoic acid + thionyl chloride → hexanoyl chloride + sulfur dioxide + hydrogen chloride
The resulting hexanoyl chloride is then reacted with ammonia (NH3) to produce hexylamine and ammonium chloride (NH4Cl). Hexanoyl chloride + ammonia → hexylamine + ammonium chloride, hexanoic acid is the correct answer for synthesizing hexylamine. Option (a) 1-Bromohexane, option (b) 1-Bromopentane, and option (d) 1-Cyanopentane are not involved in the synthesis of hexylamine from hexanoic acid.
To know more about Bromopentane visit
https://brainly.com/question/28174412
#SPJ11
[Co(NH3)5(ONO)]Cl2 and [Co(NH3)5(NO2)]Cl2 form a pair of structural isomers. Explain why you would see a different wavelength maximum for ONO- and NO2-.
The difference in coordination of the NO2- ion in the two compounds results in a difference in the electronic structure of the molecule, which affects the wavelength at which the molecule absorbs light.
The two compounds, [Co(NH3)5(ONO)]Cl2 and [Co(NH3)5(NO2)]Cl2, are considered to be structural isomers because they have the same molecular formula but different arrangements of atoms. In the first compound, the NO2- ion is coordinated to the central cobalt ion through the nitrogen atom, while in the second compound, the NO2- ion is coordinated through the oxygen atom.
The difference in coordination of the NO2- ion in the two compounds results in a difference in the electronic structure of the molecule. This, in turn, affects the wavelength at which the compound absorbs light. The absorption of light by a molecule occurs when electrons in the molecule are excited to a higher energy level by the energy of the incident light.
In the case of [Co(NH3)5(ONO)]Cl2, the ONO- ion is coordinated to the cobalt ion through the oxygen atom. This results in a higher energy level for the electrons in the NO bond. As a result, the wavelength at which the molecule absorbs light is shorter.
In contrast, in [Co(NH3)5(NO2)]Cl2, the NO2- ion is coordinated to the cobalt ion through the nitrogen atom. This results in a lower energy level for the electrons in the NO bond. As a result, the wavelength at which the molecule absorbs light is longer.
To know more about wavelength visit:
https://brainly.com/question/31143857
#SPJ11
Hi I need big help please on science
Answer:
1. Calcium oxide contains 1 calcium and one oxygen.
2. Hydrogen peroxide contains 2 hydrogens and 2 oxygens.
3. Methane contains 1 carbon and 4 hydrogens.
4. Ammonia contains 1 nitrogen and 3 hydrogens.
5. Ammonium carbonate contains 2 nitrogens, 8 hydrogens, 1 carbon, and 3 oxygens.
6. Aluminum sulfate contains 3 sulfates and 12 oxygens.
an atom of 90kr has a mass of 89.919517 amu. mass of1h atom = 1.007825 amu mass of a neutron = 1.008665 amu calculate the binding energy in mev per atom. (value ± 1)
The binding energy of an atom of 90Kr is approximately 78 MeV per atom.
1. Calculate the total mass of protons and neutrons in the nucleus:
- 90Kr has 36 protons and 54 neutrons (90-36 = 54).
- Mass of protons: 36 * 1.007825 amu = 36.2817 amu
- Mass of neutrons: 54 * 1.008665 amu = 54.46791 amu
- Total mass of protons and neutrons: 36.2817 amu + 54.46791 amu = 90.74961 amu
2. Calculate the mass defect (difference between total mass and the actual mass of the atom):
- Mass defect: 90.74961 amu - 89.919517 amu = 0.830093 amu
3. Convert the mass defect to energy using Einstein's mass-energy equivalence equation (E = mc^2):
- 1 amu is approximately equivalent to 931.5 MeV.
- Binding energy: 0.830093 amu * 931.5 MeV/amu ≈ 773.159 MeV
4. Calculate the binding energy per nucleon (atom):
- Binding energy per atom: 773.159 MeV / 90 ≈ 8.59065 MeV
- Rounding to the nearest whole number: 9 MeV per atom (± 1)
The binding energy of an atom of 90Kr is approximately 9 MeV per atom (± 1).
To know more about binding energy , visit;
https://brainly.com/question/23942204
#SPJ11
Even-numbered questions and Challenge Problems have answers in Appendix 5 and fully worked solutions in the Student Solutions Manual.
Unclassified
An aqueous solution made up of 32.47 g of iron(III) chloride in 100.0 mL of solution has a density of 1.249 g/mL at 25ºC. Calculate its
(a) molarity.
(b) molality.
(c) osmotic pressure at 25ºC (assume i = 4).
(d) freezing point.
(a) The molarity of the solution is 7.69 M.
(b) The molality of the solution needs additional information.
(c) The osmotic pressure at 25ºC is calculated using the formula π = iMRT.
(d) The freezing point needs additional information and the use of colligative properties.
How can we calculate the molarity, molality, osmotic pressure, and freezing point of the given solution?To calculate the molarity of the solution, we use the given mass of iron(III) chloride (FeCl₃) and the volume of the solution. By converting the mass to moles and dividing it by the volume in liters, we obtain the molarity.
For molality, we need additional information, such as the mass of the solvent, to calculate the number of moles of solute per kilogram of solvent.
To calculate the osmotic pressure, we can use the formula π = iMRT, where π represents osmotic pressure, i is the van't Hoff factor (assumed to be 4 in this case), M is the molarity, R is the gas constant, and T is the temperature in Kelvin.
The freezing point calculation requires additional information, including the molality of the solution and the freezing point depression constant for the solvent. By using the equation ΔTf = Kf × m, where ΔTf is the change in freezing point, Kf is the freezing point depression constant, and m is the molality, we can determine the freezing point.
Learn more about Osmotic pressure
brainly.com/question/29819107
#SPJ11
calculate the ph of a solution that contains 3.25 m hcn (ka = 6.2 × 10–10), 1.00 m naoh and 1.50 m nacn.
The ph of a solution that contains 3.25 m hcn (ka = 6.2 × 10–10), 1.00 m naoh and 1.50 m nacn is approximately 9.21.
To calculate the pH of the solution containing 3.25 M HCN, 1.00 M NaOH, and 1.50 M NaCN, we first need to consider the reactions taking place. NaOH will neutralize some of the HCN, forming water and the conjugate base, CN-. The net reaction is:
HCN + OH- → H2O + CN-
Since there is 1.00 M NaOH, it will react with an equal amount of HCN, leaving 2.25 M HCN and forming 2.25 M CN- (from both the reaction and the initial 1.50 M NaCN). Now, we can apply the Henderson-Hasselbalch equation:
pH = pKa + log([CN-]/[HCN])
First, we need to find pKa. Given that Ka = 6.2 × 10^(-10), pKa can be found by taking the negative logarithm of Ka:
pKa = -log(Ka) = -log(6.2 × 10^(-10)) = 9.21
Next, we'll plug in the values of [CN-] and [HCN]:
pH = 9.21 + log(2.25/2.25)
pH = 9.21 + 0
The pH of the solution is approximately 9.21.
To know more about NaOH visit:
brainly.com/question/29854404
#SPJ11
FILL IN THE BLANK the reaction of 50 ml of cl2 gas with 50 ml of ch4 gas via the equation: cl2(g) ch4(g)→hcl(g) ch3cl(g) will produce a total of __________ ml of products if pressure and temperature are kept constant.
The reaction of 50 mL of Cl₂ gas with 50 mL of CH₄ gas via the equation: Cl₂(g) + CH₄(g) → HCl(g) + CH₃Cl(g) will produce a total of 100 mL of products if pressure and temperature are kept constant.
According to Avogadro's law, equal volumes of gases at the same temperature and pressure contain equal numbers of molecules.
In this reaction, one mole of Cl₂ reacts with one mole of CH₄ to produce one mole of HCl and one mole of CH₃Cl. Since the volumes of reactants are equal (50 mL each), and the mole ratio is 1:1 for both reactants and products, the total volume of products formed will be the sum of the individual volumes of the reactants, which is 50 mL + 50 mL = 100 mL. This holds true as long as the pressure and temperature conditions remain constant throughout the reaction.
Learn more about Avogadro's law here: https://brainly.com/question/26931664
#SPJ11
What bromination product(s) would you expect to obtain when the following compound undergoes ring monobromination upon reaction with Br-2 and FeBr3? Only the organic product is required. Draw the molecule(s) on the canvas by choosing buttons from the Tools (for bonds), Atoms, and Advanced Template toolbars. The single bond is active by default. Part C Select the major product of the mononitration of the following substances. Drag the appropriate labels to their respective targets. Part D Draw the major product(s) of the following reaction. Draw the molecule(s) on the canvas by choosing buttons from the Tools (for bonds), Atoms, and Advanced Template toolbars. The single bond is active by deta
When the given compound undergoes ring monobromination upon reaction with Br-2 and FeBr3, the bromination product(s) would be obtained by the addition of a bromine atom to one of the carbons of the benzene ring.
Specifically, the FeBr3 acts as a Lewis acid catalyst to facilitate electrophilic substitution of Br2 on the benzene ring. The major product of the reaction would be 4-bromoanisole, where the bromine atom has been added to the 4th position of the benzene ring. The product can be drawn by adding a bromine atom to the 4th carbon of the benzene ring while keeping the O-CH3 group intact.
As for Part C, without the specific substances mentioned, it is impossible to select the major product of the mononitration.
In Part D, the given reaction could be anything, as there is no specific reaction mentioned. Hence, it is impossible to draw the major product(s) of the reaction.
To know more about bromination visit:
https://brainly.com/question/28938775
#SPJ11
choose the aqueous solution that has the highest boiling point. these are all solution of nonvolatile solutes and you should assume ideal van't Hoff vactors where applicable.
A- 0.100 m AlCl3 j=
B- 0.100 m NaCl j=
C- 0.100 m MgCl2 j=
D- 0.100 m C6H12O6 j=
The aqueous solution that has the highest boiling point is option A- 0.100 m AlCl₃ with a van't Hoff factor of 4.
The boiling point elevation (ΔTb) of a solution is directly proportional to the molality (m) of the solution, as well as the van't Hoff factor (i) of the solute. The formula for boiling point elevation is ΔTb = Kbm, where Kb is the molal boiling point elevation constant for the solvent.
Since all the solutions have the same molality of 0.100 m, the solution with the highest boiling point will be the one with the highest van't Hoff factor.
The van't Hoff factor for NaCl is 2, as it dissociates into two ions (Na⁺ and Cl⁻) in solution. The van't Hoff factor for MgCl₂ is 3, as it dissociates into three ions (Mg²⁺ and 2Cl⁻) in solution. The van't Hoff factor for AlCl₃ is 4, as it dissociates into four ions (Al³⁺ and 3Cl⁻) in solution. The van't Hoff factor for C6H12O6 (glucose) is 1, as it does not dissociate into ions in solution.
Therefore, the solution with the highest boiling point will be the one with the highest van't Hoff factor, which is AlCl₃ with a van't Hoff factor of 4. Thus, option A has the highest boiling point.
Learn more about molality at: https://brainly.com/question/14734588
#SPJ11
) for a soil sample subjected to a cell pressure of 100 kn/m2 , c=80 kn/m2, and ∅=20^o , the maximum deviator stress in kn/m2 , will be;
The maximum deviator stress is:
σd = (σ1 - σ3) / 2 = 80.8 kN/m2 (rounded to one decimal place).
How to calculate the maximum deviator stress in a soil sample?σd = (σ1 - σ3) / 2
where σ1 is the major principal stress, σ3 is the minor principal stress, and σd is the maximum deviator stress.
In this case, the given information is:
Cell pressure (σ3) = 100 kN/m2
Cohesion (c) = 80 kN/m2
Angle of internal friction (∅) = 20 degrees
We can use the following relationships to calculate the major principal stress (σ1) and the difference between σ1 and σ3:
tan(45 + ∅/2) = (σ1 + σ3) / (σ1 - σ3)
c = (σ1 + σ3) / 2 * tan(45 - ∅/2)
Substituting the given values, we get:
tan(45 + 20/2) = (σ1 + 100) / (σ1 - 100)
80 = (σ1 + 100) / 2 * tan(45 - 20/2)
Solving these equations simultaneously, we get:
σ1 = 261.6 kN/m2
σ1 - σ3 = 161.6 kN/m2
Therefore, the maximum deviator stress is:
σd = (σ1 - σ3) / 2 = 80.8 kN/m2 (rounded to one decimal place).
Learn more about Stress.
brainly.com/question/31366817
#SPJ11
In the solvolysis of 2-chloro-2-methylpropane, some di-t-butyl ether is formed. Explain this phenomenon in your own words and show the reaction sequence that represents this, starting with your starting materials.
In the solvolysis of 2-chloro-2-methylpropane, di-t-butyl ether formation occurs as a byproduct due to the interaction between the carbocation intermediate and a solvent molecule.
This is because the solvent used in the reaction, typically ethanol or water, can act as a nucleophile and attack the carbocation intermediate formed during the reaction. The carbocation intermediate is a positively charged species that is formed when the leaving group, in this case, the chloride ion, leaves the molecule.
When the nucleophile attacks the carbocation intermediate, it can form different products depending on the conditions of the reaction.
In the case of the solvolysis of 2-chloro-2-methylpropane, the nucleophile can attack the carbocation intermediate at either the carbon atom bearing the methyl group or the carbon atom bearing the tert-butyl groups.
If the nucleophile attacks the carbon atom bearing the methyl group, a molecule of ethanol or water is eliminated, resulting in the formation of di-t-butyl ether as a byproduct.
The reaction sequence for the solvolysis of 2-chloro-2-methylpropane can be represented as follows:
Starting material: 2-chloro-2-methylpropane
2-chloro-2-methylpropane + solvent (ethanol/water) → carbocation intermediate + leaving group (Cl-)
Carbocation intermediate + nucleophile (solvent) → di-t-butyl ether + solvent (ethanol/water)
As shown below;
Step 1: (C-Cl bond cleavage) → Tertiary carbocation + Cl⁻
Step 2: (Reaction with alcohol) → Di-t-butyl ether
Overall reaction:
2-chloro-2-methylpropane + solvent (ethanol/water) → di-t-butyl ether + leaving group (Cl-) + solvent (ethanol/water)
This side reaction competes with the main solvolysis reaction, leading to the formation of di-t-butyl ether in addition to the expected products.
To know more about solvolysis, click below.
https://brainly.com/question/22947698
#SPJ11
a current of 4.55 a is passed through a cu(no3)2 solution. how long, in hours, would this current have to be applied to plate out 6.90 g of copper?
To plate out 6.90 g of copper using a current of 4.55 A, you would need to apply the current for 1.99 hours.
1. Find the moles of copper: 6.90 g / 63.55 g/mol (copper's molar mass) = 0.1086 mol Cu
2. Calculate moles of electrons needed (Cu²⁺ + 2e⁻ → Cu): 0.1086 mol Cu × 2 mol e⁻/mol Cu = 0.2172 mol e⁻
3. Convert moles of electrons to Coulombs (1 mol e⁻ = 96,485 C/mol): 0.2172 mol e⁻ × 96,485 C/mol = 20,955 C
4. Calculate time in seconds (time = charge / current): 20,955 C / 4.55 A = 4,604 s
5. Convert seconds to hours: 4,604 s / 3,600 s/h = 1.99 hours
To know more about moles click on below link:
https://brainly.com/question/31597231#
#SPJ11
Carbonic acid, (OH)2C=O, pKa = 3.57 at 37o C, is the basis of the blood's buffer system. What is the percent dissociation of carbonic acid in the stomach at pH = 3.0?
what is the percent dissociation? ________ (answer to 3 places)
The percent dissociation of carbonic acid in the stomach at pH = 3.0 is 36.1%.
To find the percent dissociation, we can use the Henderson-Hasselbalch equation:
pH = pKa + log([A^-]/[HA])
where [A^-] is the concentration of the conjugate base (HCO3^-) and [HA] is the concentration of the acid (H2CO3). At equilibrium, the percent dissociation of the acid is given by:
% dissociation = [HCO3^-]/[H2CO3] x 100
We can rearrange the Henderson-Hasselbalch equation to solve for [HCO3^-]/[H2CO3]:
[HCO3^-]/[H2CO3] = 10^(pH - pKa)
At pH 3.0 and 37o C, we have:
[HCO3^-]/[H2CO3] = 10^(3.0 - 3.57) = 0.361
% dissociation = [HCO3^-]/[H2CO3] x 100 = 0.361 x 100 = 36.1%
To know more about Henderson-Hasselbalch equation click here:
https://brainly.com/question/31732200#
#SPJ11
The equilibrium concentrations for a solution of the acid HA are [HA] = 1.96 M, [A-] = 1.089 x 10-2 M, and [H3O+] = 1.089 x 10-2 M. What is the Ky for this acid? Select the correct answer below: O 2.78 x 10-3 360 1.65 x 104 6.05 x 10-5
The equilibrium concentrations for a solution of the acid HA are [HA] = 1.96 M, [A-] = 1.089 x 10-2 M, and [H3O+] = 1.089 x 10-2 M. Ky for this acid is d: Ka = 6.05 x [tex]10^{-5}[/tex].
To determine the equilibrium constant (Ka) for the acid HA, we need to use the given equilibrium concentrations and the equilibrium expression. The dissociation of HA in water can be represented by the following chemical equation:
HA <=> H3O+ + A-
The equilibrium expression for this reaction is:
Ka = ([H3O+] [A-]) / [HA]
Given equilibrium concentrations are:
[HA] = 1.96 M
[A-] = 1.089 x [tex]10^{-2}[/tex] M
[H3O+] = 1.089 x [tex]10^{-2}[/tex] M
Now, plug the concentrations into the equilibrium expression:
Ka = (1.089 x [tex]10^{-2}[/tex] * 1.089 x [tex]10^{-2}[/tex]) / 1.96
Ka = (1.18692 x [tex]10^{-4}[/tex]) / 1.96
Ka = 6.05 x [tex]10^{-5}[/tex]
Therefore, the correct answer is option d: Ka = 6.05 x [tex]10^{-5}[/tex].
To learn more about equilibrium concentrations, refer:-
https://brainly.com/question/13043707
#SPJ11
A 4 kg piece of steel at 250 °C and a 3 kg block of aluminum at 25 °C, come in thermal contact. If there is no external heat transfer or work, find the final uniform temperature and the total change in entropy? The specific heats for steel and aluminum are 0.46 kJ/kg·K and 0.9 kJ/kg·K.
The final uniform temperature is 41.4 °C.
The total change in entropy of the system is 0.797 kJ/K.
How to calculate the the final uniform temperature and the total change in entropy?To solve this problem, we can use the principle of conservation of energy and the definition of entropy change:
Conservation of energy:
The total energy of the system is conserved. Therefore, the energy lost by the steel is equal to the energy gained by the aluminum. We can express this as:
[tex]Q_steel = -Q_aluminum[/tex]
where Q is the heat transferred.
Entropy change:
The total change in entropy of the system is the sum of the entropy changes of the steel and aluminum:
ΔS_total = ΔS_steel + ΔS_aluminum
where ΔS is the change in entropy.
To calculate the final uniform temperature, we can use the formula:
Q = mcΔT
where Q is the heat transferred, m is the mass, c is the specific heat, and ΔT is the change in temperature.
Let's start by calculating the heat transferred:
[tex]Q_steel[/tex] = mcΔT_steel = 4 kg * 0.46 kJ/kg·K * (T_final - 250 °C)
[tex]Q_aluminum[/tex] = mcΔT_aluminum = [tex]3 kg * 0.9 kJ/kg·K * (T_final - 25 °C)[/tex]
Since [tex]Q_steel = -Q_aluminum[/tex], we can equate them and solve for T_final:
[tex]4 kg * 0.46 kJ/kg·K * (T_final - 250 °C) = -3 kg * 0.9 kJ/kg·K * (T_final - 25 °C)[/tex]
Simplifying the equation, we get:
1.84 (T_final - 250) = -2.7 (T_final - 25)
Solving for T_final, we get:
T_final = 41.4 °C
Therefore, the final uniform temperature is 41.4 °C.
Now, let's calculate the entropy changes:
ΔS_steel = m * c * ln(T_final/T_initial) = 4 kg * 0.46 kJ/kg·K * ln(T_final/250 °C)
ΔS_aluminum = m * c * ln(T_final/T_initial) = 3 kg * 0.9 kJ/kg·K * ln(T_final/25 °C)
Substituting the value of T_final, we get:
ΔS_steel = 0.275 kJ/K
ΔS_aluminum = 0.522 kJ/K
Therefore, the total change in entropy is:
ΔS_total = ΔS_steel + ΔS_aluminum = 0.797 kJ/K
Therefore, the total change in entropy of the system is 0.797 kJ/K.
Learn more about thermodynamics
brainly.com/question/1368306
#SPJ11
What is the major product of electrophilic addition of HBr to the following alkene? Explain your choice. OCH3 O,N
The presence of electron-donating groups (e.g., OCH3) or electron-withdrawing groups (e.g., NO2) on the alkene can affect the regioselectivity of the reaction. These groups can either stabilize or destabilize the carbocation, leading to the formation of different major products.
We can explain the general concept of electrophilic addition of HBr to an alkene and how the major product is determined. During the electrophilic addition of HBr to an alkene, the alkene's double bond acts as a nucleophile, attacking the electrophilic hydrogen of the HBr molecule. This results in the formation of a carbocation and a bromide ion (Br-). The carbocation's structure and stability determine the major product.
According to Markovnikov's rule, the hydrogen atom will preferentially attach to the carbon in the alkene with the greater number of hydrogen atoms, while the bromide ion will attach to the carbon with the fewer hydrogen atoms. This is because the more substituted carbocation is generally more stable.
However, the presence of electron-donating groups (e.g., OCH3) or electron-withdrawing groups (e.g., NO2) on the alkene can affect the regioselectivity of the reaction. These groups can either stabilize or destabilize the carbocation, leading to the formation of different major products.
To know more about electrophilic visit:
https://brainly.com/question/31182532
#SPJ11
Using a table of standard electrode potentials, decide which of the following statements is completely true.A. Cu2+ can oxidize H2, and Fe can reduce Mn2+ .B. Ni2+ can oxidize Cu2+, and Fe2+ can reduce H+ .C. Fe2+ can oxidize H2, and Fe2+ can reduce Au3+ .D. Br2 can oxidize Ni, and H2 can reduce Mn2+ .E. H + can oxidize Fe, and Ni can reduce Br2
Based on the analysis of the standard electrode potentials table, we can conclude that statement D - Br2 can oxidize Ni, and H2 can reduce Mn2+ is completely true, while the other statements are partially true or completely false.
To determine which of the statements is completely true, we need to use the standard electrode potentials table to determine whether each reaction is feasible or not.
A. Cu2+ can oxidize H2, and Fe can reduce Mn2+.
The standard electrode potential for the Cu2+/Cu couple is +0.34V, while that for the H+/H2 couple is 0.00V. This means that Cu2+ cannot oxidize H2.
B. Ni2+ can oxidize Cu2+, and Fe2+ can reduce H+.
The standard electrode potential for the Ni2+/Ni couple is -0.25V, while that for the Cu2+/Cu couple is +0.34V. This means that Ni2+ cannot oxidize Cu2+.
C. Fe2+ can oxidize H2, and Fe2+ can reduce Au3+.
The standard electrode potential for the Fe2+/Fe couple is -0.44V, while that for the H+/H2 couple is 0.00V.
D. Br2 can oxidize Ni, and H2 can reduce Mn2+.
The standard electrode potential for the Br2/Br couple is +1.07V, while that for the Ni2+/Ni couple is -0.25V.
E. H+ can oxidize Fe, and Ni can reduce Br2.
The standard electrode potential for the H+/H2 couple is 0.00V, while that for the Fe3+/Fe couple is -0.44V.
For such more question on electrode:
https://brainly.com/question/18251415
#SPJ11
The standard electrode potentials table determines electron flow in redox reactions. Only statement E is completely true: H+ oxidizes Fe, and Ni reduces Br2, based on the relative reduction potentials.
The standard electrode potentials table can be used to determine the direction of the electron flow in a redox reaction. The more positive the potential, the stronger the oxidizing agent, and the more negative the potential, the stronger the reducing agent.
A. Cu2+ can oxidize H2, and Fe can reduce Mn2+.
According to the standard electrode potentials table, the reduction potential of Cu2+ is more positive than that of H+, which means that Cu2+ can oxidize H2. However, Fe has a reduction potential that is less positive than that of Mn2+, which means that Fe cannot reduce Mn2+. Therefore, this statement is partially true but not completely true.
B. Ni2+ can oxidize Cu2+, and Fe2+ can reduce H+.
According to the standard electrode potentials table, the reduction potential of Ni2+ is less positive than that of Cu2+, which means that Ni2+ cannot oxidize Cu2+. Additionally, Fe2+ has a reduction potential that is less positive than that of H+, which means that Fe2+ cannot reduce H+. Therefore, this statement is not true.
C. Fe2+ can oxidize H2, and Fe2+ can reduce Au3+.
According to the standard electrode potentials table, the reduction potential of Fe2+ is less positive than that of H+, which means that Fe2+ cannot oxidize H2. Additionally, the reduction potential of Fe2+ is more negative than that of Au3+, which means that Fe2+ cannot reduce Au3+. Therefore, this statement is not true.
D. Br2 can oxidize Ni, and H2 can reduce Mn2+.
According to the standard electrode potentials table, the reduction potential of Br2 is more positive than that of Ni, which means that Br2 can oxidize Ni. Additionally, the reduction potential of H2 is more negative than that of Mn2+, which means that H2 cannot reduce Mn2+. Therefore, this statement is partially true but not completely true.
E. H+ can oxidize Fe, and Ni can reduce Br2.
According to the standard electrode potentials table, the reduction potential of H+ is more positive than that of Fe, which means that H+ can oxidize Fe. Additionally, the reduction potential of Ni is more negative than that of Br2, which means that Ni can reduce Br2. Therefore, this statement is completely true.
Therefore, the completely true statement is E. H+ can oxidize Fe, and Ni can reduce Br2.
learn more about electrodes here:
https://brainly.com/question/17060277
#SPJ11
The density of silver is 10.5 g/cm3. what is the mass of a bar of silver in kilograms that measures 5.50 cm x 3.75 cm x 2.10 cm?
The mass of the silver bar is approximately 0.4547 kg.
To find the mass of the silver bar, we can use the formula:
Mass = Density * Volume
Given:
Density of silver = 10.5 g/cm³
Dimensions of the silver bar:
Length (L) = 5.50 cm
Width (W) = 3.75 cm
Height (H) = 2.10 cm
First, let's calculate the volume of the silver bar:
Volume = L * W * H
Volume = 5.50 cm * 3.75 cm * 2.10 cm
Volume = 43.3125 cm³
Now, we can calculate the mass using the density:
Mass = Density * Volume
Mass = 10.5 g/cm³ * 43.3125 cm³
Mass = 454.6875 g
To convert the mass to kilograms, divide by 1000:
Mass in kilograms = 454.6875 g / 1000
Mass in kilograms ≈ 0.4547 kg
Therefore, the mass of the silver bar is approximately 0.4547 kg.
To know more about silver bar refer here
https://brainly.com/question/30448184#
#SPJ11
the solubility of ce(io3)3 in a 0.20 m kio3 solution is 4.4 ✕ 10-8 mol/l. calculate ksp for ce(io3)3.
The solubility of ce(io3)3 in a 0.20 m kio3 solution is 4.4 ✕ 10-8 mol/l then the ksp for ce(io3)3 is approximately 3.52 × 10⁻²¹.
To calculate the Ksp for Ce(IO3)3 using the provided solubility and concentration of KIO3, follow these steps:
1. Write the balanced chemical equation for the dissolution of Ce(IO3)3:
Ce(IO3)3(s) ⇌ Ce^3+(aq) + 3 IO3^-(aq)
2. Since the solubility of Ce(IO3)3 in a 0.20 M KIO3 solution is 4.4 × 10⁻⁸ mol/L, we know that:
[Ce^3+] = 4.4 × 10⁻⁸ mol/L
[IO3^-] = 3 × (4.4 × 10⁻⁸ mol/L) + 0.20 mol/L (due to the presence of KIO3)
3. Write the expression for Ksp:
Ksp = [Ce^3+][IO3^-]³
4. Substitute the concentrations of Ce^3+ and IO3^- into the Ksp expression:
Ksp = (4.4 × 10⁻⁸)(3 × 4.4 × 10⁻⁸ + 0.20)³
5. Calculate Ksp:
Ksp = (4.4 × 10⁻⁸)((1.32 × 10⁻⁷) + 0.20)³
Ksp = (4.4 × 10⁻⁸)(0.20³)
Ksp ≈ 3.52 × 10⁻²¹
Therefore, the Ksp for Ce(IO3)3 is approximately 3.52 × 10⁻²¹.
For more questions on solubility:
https://brainly.com/question/24057916
#SPJ11
Ksp for Ce(IO3)3 in 0.20 M KIO3 is 7.99 x 10^-10. [Ce3+] = 4.4 x 10^-8 mol/L, [IO3-] = 0.60 M. Ksp = [Ce3+][IO3-]^3.
A measure of a compound's solubility in a certain solvent is the solubility product constant (Ksp). It stands for the equilibrium constant for a salt's partial dissociation into its component ions. The following equation may be used to get Ksp for Ce(IO3)3 in a solution containing 0.20 M KIO3:
Ce3+ + 3IO3- = Ce(IO3)3.
Ksp = (Ce3+)(IO3-)(3)
According to Ce(IO3)3's stated solubility, [Ce3+] = 4.4 10-8 mol/L. We need to take the KIO3 solution's impact into account in order to find [IO3-]. The concentration of IO3- in the solution is because KIO3 dissociates into K+ and IO3-, which is:
The formula is [IO3-] = 3 [KIO3] = 3 0.20 M = 0.60 M.
We can now solve for Ksp by plugging these numbers into the Ksp equation:
Ksp equals (4.4 108) mol/L.
learn more about KIO3 here:
https://brainly.com/question/31207356
#SPJ11
The nitrile hydrolysis route is just one way of synthesizing the carboxylic acid. Which of these routes will also give the desired product from 1-chloro-2-methylbutane? CI CO2H The alternative route is:1) Mg 2) CO, 3) H, 0+1) H,02) K, Cr, 1) NaOH 2) K, CEO, 1) NaH 2) HCOH
The Grignard reaction is an alternative route for synthesizing the carboxylic acid from 1-chloro-2-methylbutane. The Grignard reaction involves the following steps:
1) Formation of the Grignard reagent: Add magnesium (Mg) to 1-chloro-2-methylbutane. The magnesium inserts itself between the carbon and chlorine atoms, forming the Grignard reagent, 2-methylbutylmagnesium chloride.
2) Reaction with carbon dioxide (CO2): Add the Grignard reagent to a solution containing carbon dioxide (CO2). This causes the carbon from the Grignard reagent to bond with the carbon in CO2, resulting in a magnesium carboxylate salt.
3) Acidification: Add a suitable acid (H3O+) to the magnesium carboxylate salt. This replaces the magnesium ion with a hydrogen ion, forming the desired carboxylic acid product.
In summary, the Grignard reaction allows the synthesis of the carboxylic acid from 1-chloro-2-methylbutane through the formation of a Grignard reagent, reaction with carbon dioxide, and subsequent acidification. This alternative route is efficient and effective in producing the desired carboxylic acid product.
For more information on Grignard reaction visit:
brainly.com/question/31786420
#SPJ11
solid zinc and aqueous copper(ii) sulfate explain assumptions
When solid zinc is placed into aqueous copper(ii) sulfate, a single replacement reaction occurs. This reaction can be represented by the following chemical equation: Zn(s) + CuSO4(aq) → Cu(s) + ZnSO4(aq)
In this reaction, the zinc atoms in the solid zinc strip react with the copper(ii) ions in the aqueous copper(ii) sulfate solution. The zinc atoms lose electrons and are oxidized to form zinc ions (Zn2+), while the copper(ii) ions gain electrons and are reduced to form solid copper (Cu). The resulting product of the reaction is zinc sulfate (ZnSO4) in aqueous solution.
This reaction assumes that the copper(ii) sulfate solution is aqueous and that the zinc strip is solid. It also assumes that the reaction takes place at standard temperature and pressure.
Additionally, this reaction assumes that the zinc strip and copper(ii) sulfate solution are in contact with each other, allowing for the exchange of electrons to occur.
In summary, the reaction between solid zinc and aqueous copper(ii) sulfate is a single replacement reaction that results in the formation of solid copper and aqueous zinc sulfate. This reaction is governed by the principles of oxidation-reduction reactions and is dependent on the assumptions that the copper(ii) sulfate solution is aqueous, the zinc strip is solid, and the reaction takes place at standard temperature and pressure.
To know more about oxidation-reduction reactions, visit:
https://brainly.com/question/19528268
#SPJ11
Why can't the reaction, ZnCl2 + H2 → Zn + 2HCI, occur naturally?
The reaction ZnCl2 + H2 → Zn + 2HCl cannot occur naturally because it violates the conservation of energy principle.
In nature, chemical reactions occur based on the principles of thermodynamics, which include the conservation of energy. This principle states that energy cannot be created or destroyed; it can only be converted from one form to another.
In the given reaction, ZnCl2 (zinc chloride) and H2 (hydrogen gas) react to form Zn (zinc) and 2HCl (hydrochloric acid). However, this reaction violates the conservation of energy principle because the reaction produces more energy than is consumed.
When hydrogen gas (H2) reacts with zinc chloride (ZnCl2), an exothermic reaction takes place, meaning it releases energy. The energy released in this reaction is greater than the energy required to break the bonds in zinc chloride and hydrogen gas, leading to a net gain of energy. This violates the conservation of energy principle, as it implies that energy is being created within the reaction, which is not possible in a natural system.
Therefore, this reaction cannot occur naturally due to its violation of the conservation of energy principle.
To learn more about thermodynamics click here
brainly.com/question/30207871
#SPJ11
How many grams of si3n4 can be produced from 0.46 moles of n2 step by step?
16.14 grams of Si3N4 can be produced from 0.46 moles of N2.
To determine the number of grams of Si3N4 that can be produced from 0.46 moles of N2, we need to use the balanced chemical equation for the reaction that produces Si3N4. Let's assume the balanced equation is:
3Si + 4N2 → Si3N4
From the balanced equation, we can see that it takes 4 moles of N2 to produce 1 mole of Si3N4. Therefore, we need to convert the given moles of N2 to moles of Si3N4 and then to grams.
Step 1: Convert moles of N2 to moles of Si3N4
Since the mole ratio of N2 to Si3N4 is 4:1, we can use the ratio to convert moles of N2 to moles of Si3N4:
0.46 moles N2 × (1 mole Si3N4 / 4 moles N2) = 0.115 moles Si3N4
Step 2: Convert moles of Si3N4 to grams
To convert moles of Si3N4 to grams, we need to know the molar mass of Si3N4. The molar mass of Si3N4 can be calculated as follows:
(3 × atomic mass of Si) + (4 × atomic mass of N)
= (3 × 28.09 g/mol) + (4 × 14.01 g/mol)
= 84.27 g/mol + 56.04 g/mol
= 140.31 g/mol
Now, we can use the molar mass to convert moles of Si3N4 to grams:
0.115 moles Si3N4 × (140.31 g Si3N4 / 1 mole Si3N4) = 16.14 grams Si3N4
Therefore, approximately 16.14 grams of Si3N4 can be produced from 0.46 moles of N2.
To learn more about moles, refer below:
https://brainly.com/question/31597231
#SPJ11
calculate the concentrations of h , hc03, and co~- in a 0.025 m h2c03 solution.
The concentrations of H+, HCO₃-, and CO₃²- in a 0.025 M H₂CO₃ solution are:
[H+] = 0.025 M
[HCO₃-] = 1.8 × 10⁻⁶ M
[CO₃²-] = 2.0 × 10⁻¹⁰ M
H₂CO₃ (carbonic acid) is a weak acid that can undergo dissociation reactions in aqueous solution:
H₂CO₃ ⇌ H+ + HCO₃- Ka1 = 4.3 × 10⁻⁷
HCO₃- ⇌ H+ + CO₃²- Ka2 = 4.8 × 10⁻¹¹
At equilibrium, the concentrations of H+, HCO₃-, and CO₃²- in the solution can be calculated using the equilibrium constant expressions for each dissociation reaction. However, since the concentration of H₂CO₃ is given, we first need to determine the initial concentration of H+ before any dissociation reactions occur.
Since H₂CO₃ is a diprotic acid, the initial concentration of H+ can be calculated from the following mass balance equation:
[H₂CO₃] = [H+] + [HCO₃-] + [CO₃²-]
Substituting the given concentration of H₂CO₃ into the equation and assuming that the dissociation reactions are negligible compared to the initial concentration of H₂CO₃, we get:
[H+] = [H₂CO₃] = 0.025 M
Now we can use the equilibrium constant expressions for the dissociation reactions to calculate the equilibrium concentrations of HCO₃- and CO₃²-:
Ka1 = [H+][HCO₃-]/[H₂CO₃]
4.3 × 10⁻⁷ = (0.025 M)([HCO₃-])/0.025 M
[HCO₃-] = 1.8 × 10⁻⁶ M
Ka2 = [H+][CO₃²-]/[HCO₃-]
4.8 × 10⁻¹¹ = (0.025 M)([CO₃²-])/1.8 × 10⁻⁶ M
[CO₃²-] = 2.0 × 10⁻¹⁰ M
Therefore, the concentrations of H+, HCO₃-, and CO₃²- in a 0.025 M H₂CO₃ solution are:
[H+] = 0.025 M
[HCO₃-] = 1.8 × 10⁻⁶ M
[CO₃²-] = 2.0 × 10⁻¹⁰ M
To learn more about dissociation reactions here
https://brainly.com/question/28952043
#SPJ4
Complete question is :
Calculate the concentrations of H+, HCO₃-, and CO₃²- in a 0.025 m H₂CO₃ solution.
Which metal would spontaneously reduce pb2 ?
According to the standard reduction potential table, metals that are located higher in the table have a greater tendency to undergo reduction and therefore can spontaneously reduce ions of metals that are located lower in the table.
In this case, Pb2+ is the ion of lead, and metals that are located higher than lead in the table can spontaneously reduce it.
Aluminum (Al), zinc (Zn), and iron (Fe) are located higher than lead in the table and can spontaneously reduce Pb2+. Therefore, any of these metals would spontaneously reduce Pb2+.
To know more about standard reduction potential refer here
https://brainly.com/question/23881200#
#SPJ11