Answer:
$ 71.83
Step-by-step explanation:
This year's earnings=last year's earnings*(1+growth rate)=$2*(1+20%)=$2.4
This year's dividend=2.4 *payout ratio=2.4 *20%=$0.48
Next year's earnings=$2.4*1.2=$2.88
Next year's dividend=2.88 *0.2=$ 0.58
Year 3 earnings=$2.88*1.2=$ 3.46
Year three dividend= 3.46*0.2=$0.69
year 4 earnings =$3.46*1.08=$ 3.74
Dividend from year 4 onward= 3.74 *0.5=1.87
From year 4 terminal value=1.87 /(cost of equity-growth rate)=1.87/(10%-8%)=$93.5
Share price is present value of the above dividends amnd terminal value=0.48/(1+0.1)^0+0.58/(1+0.1)^1+0.69/(1+0.1)^2+93.5/(1+0.1)^3=$ 71.83
Mrs. Chu's famous peanut butter cookies call for 1 cup of peanut butter for every 1/2 of a cup of oil. Today, she wants to make a huge batch with 1 cup of oil. How much peanut butter should she use?
Answer:
she should use 2 cups of peanut butter
Step-by-step explanation:
to know the answer to that
use this equation (pb is peanut butter &o is oil)
1cup of pb=1/2 cup of o
?=1 cup of o
1×1÷1/2= 1×1×2/1=2co cups of pb
6th grade math help :D....
The unit price of the first one which is a is 8 cents an ounce. The second one is 9 cents an ounce.
What you do is you take your price and divide it by the ounces.
Question one's answer is 0.08
Question two's answer is 0.09
circle with a radius of 3 has a sector with a central angle of 17/9 pi radians. what is the area of the sector
Answer:
17/2 pi
Step-by-step explanation:
Area of the whole circle is pi r², which is 9 pi
9 pi x 17/9 pi / 2 pi = 17/2 pi
At the start of 2014 Mike's car was worth £12000.
The value of the car decreased by 30% every year.
Work out the value of his car at the start of 2017.
The value of Mike's car at the start of 2017 is £4116.
What is percentage ?
Percentage is a ratio in the form of fraction of 100.
Percentage is defined by the "%" symbol.
What is the required value of the car ?At the start of the year 2014, Mike's car was worth £12000.
The value of the car decreased by 30% every year.
So, The value of the car at the start of 2015 = £12000×[tex](1-\frac{30}{100})[/tex]
= £ 12000×[tex]\frac{7}{10}[/tex]
= £ 8400
Again, The value of the car at the start of 2016 = £8400×[tex](1-\frac{30}{100})[/tex]
= £8400×[tex]\frac{7}{10}[/tex]
= £5880
∴ The value of the car at the start of 2017 = £5880×[tex](1-\frac{30}{100})[/tex]
= £5880×[tex]\frac{7}{10}[/tex]
= £4116
Learn more about percentage here :
https://brainly.com/question/843074
#SPJ2
Evaluate -a when a is
(−−99)
Answer:
a = -99
Step-by-step explanation:
(−−99) is equal to just 99 since a negative and a negative equals a positive.
If -a is equal to 99, a must equal -99.
Which equation could generate the curve in the graph below?
Answer:
[tex]y=2x^2+8x+8[/tex]
Step-by-step explanation:
Notice that we are looking for a quadratic function that has only one real solution for y=0, that is a unique point that touches the x-axis
We need therefore to look at the discriminant associated with all 4 equations constructed by equaling y to zero. We then try to find one that gives discriminant zero , corresponding to a unique real solution to the equation.
a) [tex]9x^2+6x+4=0[/tex] has discriminant: [tex]6^2-4(9)(4)=-108[/tex]
b) [tex]6x^2-12x-6=0[/tex] has discriminant: [tex](-12)^2-4(6)(-6)=288[/tex]
c) [tex]3x^2+7x+5=0[/tex] has discriminant: [tex](7)^2-4(3)(5)=-11[/tex]
d) [tex]2x^2+8x+8=0[/tex] has discriminant: [tex](8)^2-4(2)(8)=0[/tex]
Therefore, the last function is the one that can have such graph
Answer:
d
Step-by-step explanation:
For two years, two samples of fish were taken from a pond. Each year, the second sample was taken six months after the first sample.
Table:2 tables. A 3-column table with 4 rows. Column 1 is labeled Year 1 with entries trout, catfish, bass, all fish. Column 2 is labeled Sample 1 with entries 3, 9, 8, 20. Column 3 is labeled Sample 2 with entries 5, 9, 6, 20. The second table is a 3-column table with 4 rows. Column 1 is labeled Year 1 with entries trout, catfish, bass, all fish. Column 2 is labeled Sample 1 with entries 8, 10, 2, 20. Column 3 is labeled Sample 2 with entries 10, 9, 1, 20.
Question:Make an inference about which fish increased its predicted average population from Year 1 to Year 2.
A.All three types of fish increased their predicted average population.
B.Trout increased its predicted average population.
C.Bass increased its predicted average population.
D.None of the fish increased their predicted average population.
Answer:
B
Step-by-step explanation:
Answer:
B
Step-by-step explanation:
Trout increased its predicted average population.
Peter rolls 2 fair dice and adds the results from each.
Work out the probability of getting a total that is a multiple of 6.
Answer:
i think it might be 17%
Step-by-step explanation:
if you divide 100 by 10 u get 10 then divide 10 by 6 to get 1.6666666667 round that to one decimal place to get 1.7 then times it by 10 to get 17
Answer:
Answer is 1/6 (fraction answer)
If a bus traveled 175 miles in 5 hours, what was the average speed of the bus in miles per hour?
Answer: 35 miles per hour.
Step-by-step explanation:
Miles per hour is found by dividing miles driven by the time it took to drive said miles.
175 / 5 = 35 miles per hour.
Answer:
35 mph
Step-by-step explanation:
175/5=35
write Help Marshmello i wasn't born yesterday.
Answer:
1/4
Step-by-step explanation:
To find the slope given two points
m = (y2-y1) / (x2-x1)
= (4-3)/(5-1)
= 1/4
Answer:
[tex] \frac{1}{4} [/tex]
Step-by-step explanation:
[tex] \frac{y1 - y2}{x1 - x2} \\ \frac{3 - 4}{1 - 5} \\ \frac{ - 1}{ - 4} \\ = \frac{1}{4} [/tex]
hope this helps
brainliest appreciated
good luck! have a nice day!
10)
For which value of x is the equation 2(1 + x) = x + 3 true?
A) 1
B) 2
03
D)
4
Answer:
A) 1
Step-by-step explanation:
2(1+x)= x+3
2(1+1)= 1+3
2×2= 4
4=4
Hence proven
Answer:
A. 1
Step-by-step explanation:
2(1 + x) = x + 3
2 + 2x = x + 3
2x - x = 3 - 2
x = 1
Negative numbers have positive square roots.
A. True
B. False
Answer: False.
Step-by-step explanation:
False. Negative numbers have imaginary roots, represented by [tex]i[/tex].
For instance, the square root of negative 36 would be 6i.
Estimate the volume of the solid that lies below the surface z = ex+y and above the rectangle
1. The volume under the surface [tex]f(x,y)=e^{x+y}[/tex] is given by the double integral,
[tex]\displaystyle\int_0^1\int_0^1e^{x+y}\,\mathrm dx\,\mathrm dy[/tex]
We split up the integration region into a 2x3 grid of rectangles whose upper right corners are determined by the right endpoints of the partition along either axis. That is, we split up the [tex]x[/tex] interval [0, 1] into 2 subintervals,
[0, 1/2], [1/2, 1]
with right endpoints given by the arithmetic sequence,
[tex]r_i=0+\dfrac{i(1-0)}2=\dfrac i2[/tex]
for [tex]i\in\{1,2\}[/tex], and the [tex]y[/tex] interval [0, 1] into 3 subintervals,
[0, 1/3], [1/3, 2/3], [2/3, 1]
with right endpoints
[tex]r_j=0+\dfrac{j(1-0)}3=\dfrac j3[/tex]
for [tex]j\in\{1,2,3\}[/tex].
Then the upper right corners of the 6 rectangles are the points
(1/2, 1/3), (1/2, 2/3), (1/2, 1), (1, 1/3), (1, 2/3), (1, 1)
generated by the sequence [tex](r_i,r_j)[/tex].
The integral is thus approximated by the sum
[tex]\displaystyle\sum_{j=1}^3\sum_{i=1}^2f(r_i,r_j)\dfrac{1-0}m\dfrac{1-0}n=\dfrac16\sum_{j=1}^3\sum_{i=1}^2f(r_i,r_j)=\frac{e^{5/6}+e^{7/6}+e^{4/3}+e^{5/3}}6[/tex]
or approximately 2.4334. (Compare to the actual value of the integral, which is close to 2.952.)
For the midpoint rule estimate, we replace the sampling points [tex](r_i,r_j)[/tex] with [tex](m_i,m_j)[/tex], i.e. the midpoints of each subinterval, so the set of sampling points is
(1/4, 1/6), (3/4, 1/6), (1/4, 1/2), (3/4, 1/2), (1/4, 5/6), (3/4, 5/6)
and the integral is approximately
[tex]\displaystyle\sum_{j=1}^3\sum_{i=1}^2f(m_i,m_j)\dfrac{1-0}m\dfrac{1-0}n=\frac{e^{5/12}+e^{3/4}+e^{11/12}+e^{13/12}+e^{5/4}+e^{19/12}}6[/tex]
or about 2.908.
2. We approach the second integral the same way. Split up the [tex]x[/tex] interval into 8 subintervals with left and right endpoints given respectively by
[tex]\ell_i=-2+\dfrac{(i-1)(2-(-2))}8=\dfrac{i-5}2[/tex]
[tex]r_i=-2+\dfrac{i(2-(-2))}8=\dfrac{i-4}2[/tex]
for [tex]i\in\{1,2,\ldots,8\}[/tex], and the [tex]y[/tex] interval into 2 subintervals with
[tex]\ell_j=0+\dfrac{(j-1)(2-0)}2=j-1[/tex]
[tex]r_j=0+\dfrac{j(2-0)}2=j[/tex]
for [tex]j\in\{1,2\}[/tex].
The upper left corners of the rectangles in this grid are given by the sequence [tex](\ell_i,r_j)[/tex]. So the integral is approximately
[tex]\displaystyle\sum_{j=1}^2\sum_{i=1}^8f(\ell_i,r_j)\frac{2-(-2)}m\frac{2-0}n=51[/tex]
(Compare to the actual value, 32.)
What is the midpoint of the segment shown below? (-2,4) (6,-4)
Answer:
(2,0)
Step-by-step explanation:
To find the midpoints of two points in the format (x,y), we find the mean for the values of x and y.
In this question:
(-2,4) and (6,-4)
Mean for the values of x:
(-2 + 6)/2 = 2
Mean for the values of y:
(4-4)/2 = 0
Midpoint:
(2,0)
A highway has an optional toll lane that drivers may take to reduce the time they spend driving. Drivers pay a small fee to enter the toll lane ($0.25). Then, once they leave the toll lane, they pay a fee based on the number of miles they have traveled on the toll lane. Assume that the driver may leave the lane after any whole number of miles, and pays for exactly that number, without rounding up. Note that there is a linear relationship between the number of miles a vehicle has traveled and the price of the toll.
# of Miles traveled on toll lane Toll ($)
0 .25
1 1.00
2 1.75
5 4.00
10 7.75
A. If Frank is on the toll road for 8.00 miles and then leaves the lane, how much will he have to pay total for the trip?
B. Each day, Susan has to pay a toll of $10.00 when she uses the toll lane to get to school. How many miles does Susan travel on the toll lane to get to school?C. John started a carpool with his coworkers to save money. He and his three passengers split the cost of the toll. If each person pays about $2.31 (which includes their contribution to the toll lane entry fee), how many miles do they travel on the toll lane?
Answer:
A. If Frank is on the toll road for 8.00 miles and then leaves the lane, how much will he have to pay total for the trip?
$6.25B. Each day, Susan has to pay a toll of $10.00 when she uses the toll lane to get to school. How many miles does Susan travel on the toll lane to get to school?
13 milesC. John started a carpool with his coworkers to save money. He and his three passengers split the cost of the toll. If each person pays about $2.31 (which includes their contribution to the toll lane entry fee), how many miles do they travel on the toll lane?
9 milesStep-by-step explanation:
the toll lane charges $0.25 fixed plus $0.75 per mile driven: fee = $0.25 + $0.75miles
a) Frank ⇒ $0.25 + (8 x $0.75) = $6.25
b) Susan ⇒ $10 - $0.25 = $9.75 / 0.75 = 13 miles
c) John ⇒ $2.31 x 3 = $6.93 - $0.25 = $6.68 / 0.75 = 8.91 ≈ 9 miles. Each passenger should pay $2.33 because the total toll lane fee is $7.
Imagine that you need to buy some chicken for dinner tonight. You found an ad showing that the store across town has chicken on sale for $1.59 a pound. Your usual neighborhood store sells the same chicken for $2.89 a pound. Is it worth the extra drive?
Look at the information below you’ll need to solve the problem.
How much chicken will you be buying? 3 pounds
How does the distance and the time it takes to get there, compare between the two stores? Your neighborhood store is 2.1 miles away, and takes about 8 minutes. The store across town is 8.6 miles away, and takes about 24 minutes.
What kind of mileage does your car get? It averages about 22 miles per gallon in the city.
How many gallons of fuel does your car hold? About 13 gallons
How much is gas? About $1.98/gallon right now.
Are there any other pieces of information you need to solve the problem? Which option would you choose? Is going to the further store cheaper? Or is going to the close store cheaper? How much money does the cheaper option save you? Give your answer to the nearest cent.
Answer:
Step-by-step explanation:
Considering the store in your neighborhood, price per pound of chicken is $2.89. The cost of 3 pounds is
3 × 2.89 = $8.67
Distance = 2.1 miles
The car averages about 22 miles per gallon in the city. It means that the number of gallons needed is
2.1/22 = 0.095 gallons
Cost of gas = $1.98/gallon
Cost of 0.095 gallons =
1.98 × 0.095 = $0.1881
Total cost = 8.67 + 0.1881 = $8.86
Considering the store across town, price per pound of chicken is $1.59. The cost of 3 pounds is
3 × 1.59 = $4.77
Distance = 8.6 miles
The car averages about 22 miles per gallon in the city. It means that the number of gallons needed is
8.6/22 = 0.39 gallons
Cost of gas = $1.98/gallon
Cost of 0.39 gallons =
1.98 × 0.39 = $0.77
Total cost = 4.77 + 0.77 = $5.54
Therefore, it is cheaper going to the further store. The amount that the cheaper option saves is
8.86 - 5.54 = $3.32
Holly drew the parallelogram below to represent the design of her new garden. A parallelogram with base b and height h. She found that the area of the garden will be 127 and one-half square feet by using the equation Area = b h. If the height, h, of the parallelogram-shaped garden is 8 and one-half feet, what is the base, b, in feet? 1.5 7.5 15 75
Answer: i just took the quiz it is 15
Step-by-step explanation:
Answer:
The answer is 15
Step-by-step explanation:
She found that the area of the garden will be 127 and one-half square feet by using the equation Area = b h. If the height, h, of the parallelogram-shaped garden is 8 and one-half feet, what is the base, b, in feet? Hmm so it says that base times height equals 127 and one half square feet and the height is 8 and one half feet so you guessed it you have to divided 127 and one half square feet by 8 and one half feet which is 15.
Hope this helped for you understanding how to do this problem have a great day!
Given that m angle KLH=120^ which statement about the must be true? angle HLM is bisected by angle GLJ is bisected by vec LH . m angle KLG=m angle HLJ m angle HLI=m angle LLM
Answer:angle hlm is bisected by Lj
Step-by-step explanation:
The true statement is ∠HLM is bisected by LI
What is bisect?Bisect means to divide a geometric figure to two equal half.Dividing line is bisector.Given that ∠KLH=120°
We know that angle of straight line is 180°
∴∠KLM=180°
∠KLH+∠HLM=180°
120°+∠HLM=180°
∠HLM=60°
From figure, ∠HLI=30° and ∠ILM=30°
Line LI cuts the angle HLM into two equal parts such as HLI and ILM.
Therefore, ∠HLM is bisected by LI
Learn more about angle here:
https://brainly.com/question/25716982
#SPJ2
If x = 0 and y > 0, where is the point (x, y) located?
Answer:
On the positive Y-axis
Step-by-step explanation:
Answer:
Positive Y-axis
Step-by-step explanation:
Sandra calculated the height of a cylinder that has a volume of 576 π cubic centimeters and a radios of 8 centimeters. Her work is shown below.
Answer:
[tex] \boxed{Height \: of \: cylinder = 9 \: centimeters} [/tex]
Given:
Volume of cylinder = 576π cubic centimeters
Radius of cylinder (r) = 8 centimeters
Step-by-step explanation:
Let the height of cylinder be 'h'
[tex] = > Volume \: of \: cylinder = \pi {r}^{2} h \\ \\ = > 576 \cancel{\pi} = \cancel{ \pi}( {8}^{2} )h \\ \\ = > 576 = 64h \\ \\ = > 64h = 576 \\ \\ = > h = \frac{576}{64} \\ \\ = > h = 9 \: centimeters [/tex]
Height of cylinder = 9 centimeters
Evaluate the following:
a to the power 3 times a to the power 6 times a to the power 4
Answer: a to the power 13
Step-by-step explanation: identity: a^m × a^n= a^m+n
^ means 'to the power'
PLEASE RATE 5 STARS AND VOTE AS BRAINLIEST:)
(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)
Choose the best reason for factoring out the greatest common factor, if there is one, before attempting to factor a trinomial. Choose the correct answer below. A. Factor out the greatest common factor first because it makes the trinomial easier to factor if the numerical and variable parts are simpler. B. Factor out the greatest common factor first because there is always a greatest common factor to remove. C. Factor out the greatest common factor first because it completes the factorization of the trinomial. D. Factor out the greatest common factor first because the constant term will be positive.
Answer:
A
Step-by-step explanation:
Removal of greatest common multiple makes the equation easier to factor it.
The best reason for factoring out the greatest common factor is,
⇒ Factor out the greatest common factor first because it makes the trinomial easier to factor if the numerical and variable parts are simpler.
What is Greatest common factors?The highest number that divides exactly into two more numbers, is called Greatest common factors.
Given that;
We have to choose the best reason for factoring out the greatest common factor, if there is one, before attempting to factor a trinomial.
Now, We know that;
When we factor out the greatest common factor first then it makes the trinomial easier to factor if the numerical and variable parts are simpler.
Thus, The best reason for factoring out the greatest common factor is,
⇒ Factor out the greatest common factor first because it makes the trinomial easier to factor if the numerical and variable parts are simpler.
Learn more about the Greatest common factors visit:
https://brainly.com/question/219464
#SPJ2
What’s the correct answer for this?
Answer:
centre = (2, - 5) and radius = 4
Step-by-step explanation:
The centre is positioned at (2, - 5 )
The distance from the centre to the circumference, the radius, is 4
a cylinder has a volume of (x+5) (x^2+10x+25)pi and a diameter of 2x+10. Find the height. PLEASE HELP
Answer:
Height = (x² + 10x + 25)
Step-by-step explanation:
We are given;
volume of cylinder; v = (x+5)•(x² + 10x + 25)π
Diameter = 2x + 10
So radius;r = diameter/2 = (2x + 10)/2 = x + 5
Now,formula for volume of cylinder is;
V = πr²h
Where r is radius and h is height
Plugging in the relevant values, we have;
(x+5)•(x² + 10x + 25)π = π(x + 5)*h
Dividing both sides by π(x + 5) gives us;
h = (x² + 10x + 25)
Is a toy collector’s reasoning behind buying toys more similar or different than the average person who buys toys?
plez explain
Answer:
Probably different. The average customer will want to buy toys to play with, to have fun with, unlike a collecters motif which is to display their items.
What is the area of circle with a diameter of 22 ft? (use 3.14 for pi; show your work in numbers)
Answer:
69.08
Step-by-step explanation:
π×d
3.14×22=69.08
According to the Gallup survey, 23% of Americans reported eating less meat in the past year than they had previously. Results for this Gallup poll are based on telephone interviews conducted Sept. 16-30, 2019, with a random sample of 2,431 adults, aged 18 and older, living in all 50 U.S. states and the District of Columbia. Test that the proportion of Americans who reduced meat consumption last year is less than 0.25. Use α = 0.05. State the rejection region. Group of answer choices z > 1.65 z > 1.65 z < − 1.65 z < − 1.65 z > 1.96 z > 1.96
Answer:
Null hypothesis:[tex]p\geq 0.25[/tex]
Alternative hypothesis:[tex]p < 0.25[/tex]
The statistic would be given by:
[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)
Now we need to find the critical value for the rejection zone of the null hypothesis. Since we have a left tailed test we need to find in the normal standard distirbution a value who accumulate 0.05 of the area in the left tail and we got:
[tex] z_{crit}= -1.65[/tex]
And the best choice for this case would be:
z < − 1.65
Step-by-step explanation:
Information provided
n=2431 represent the random sample taken
[tex]\hat p=[/tex] estimated proportion of interest
[tex]p_o=0.25[/tex] is the value that we want to test
[tex]\alpha=0.05[/tex] represent the significance level
Confidence=95% or 0.95
z would represent the statistic
Hypothesis to test
We want to verify if the true proportion of Americans who reduced meat consumption last year is less than 0.25, then the system of hypothesis are :
Null hypothesis:[tex]p\geq 0.25[/tex]
Alternative hypothesis:[tex]p < 0.25[/tex]
The statistic would be given by:
[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)
Now we need to find the critical value for the rejection zone of the null hypothesis. Since we have a left tailed test we need to find in the normal standard distirbution a value who accumulate 0.05 of the area in the left tail and we got:
[tex] z_{crit}= -1.65[/tex]
And the best choice for this case would be:
z < − 1.65
Find the volume of the cone radius is 7 and height is 12
Answer:
[tex]615.75units^3[/tex]
Step-by-step explanation:
[tex]V=\pi r^2\frac{h}{3} \\=\pi 7^2\frac{12}{3} \\=615.75units^3[/tex]
A binomial probability experiment is conducted with given parameters. Compute the probability of x successes in the n independent trials of the experiment.
N=15, p=0.2,×=4
Answer:
P(X = 4) = 0.1876
Step-by-step explanation:
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
In this question:
[tex]n = 15, p = 0.2[/tex]
We want P(X = 4). So
[tex]P(X = 4) = C_{15,4}.(0.2)^{4}.(0.8)^{11} = 0.1876[/tex]
William wants to invest $30,000 in a mutual fund.
a) Bank A has an annual interest rate of 6.5% for 5 years. How much money will he have
at the end of the 5 years? $
Answer:
He will have $39,750 at the end of five years.
Step-by-step explanation:
This is a simple interest problem.
The simple interest formula is given by:
[tex]E = P*I*t[/tex]
In which E is the amount of interest earned, P is the principal(the initial amount of money), I is the interest rate(yearly, as a decimal) and t is the time.
After t years, the total amount of money is:
[tex]T = E + P[/tex]
In this question:
[tex]P = 30000, I = 0.065, t = 5[/tex]
Interest earned:
[tex]E = P*I*t = 30000*0.065*5 = 9750[/tex]
Total amount:
[tex]T = E + P = 9750 + 30000 = 39750[/tex]
He will have $39,750 at the end of five years.